

JETSET, for those of you whose fantasies include manning a perilous flight, offers the adventure of fly-ing-minus the jet lag and the risk. With the Jet Simulator Electronic Trainer (hence JETSET), you'll maneuver an aircraft through the three stages of flight-takeoff, cruising, and landing-in less than ideal conditions. The program, which runs on the TRS-80 Model II, uses the keyboard and screen to make a personal computer version of a commercial flight simulator. You and the controls, of course, remain firmly planted on the ground.

I designed JETSET with three criteria in mind. I wanted it to be technically sound and complex enough to require a certain amount of skill and judgment at the keyboard. Above all, I wanted the game to hold the player's interest by presenting a challenge. To make JETSET a realistic simulation, everything the pilot does in this program must be coordinated with an instrument panel displayed on the computer screen. In addition, the pilot must follow the actual procedures required when flying in near-
zero visibility. A plane flown in such inclement weather must proceed according to Instrument Flight Rules (IFR) established by the government, and the pilot must be specially trained and certified to fly on instruments. This information is incorporated into the JETSET program.

Instrument landing is the most complex part of the simulation.

JETSET, which is written in TRS-80 Model II BASIC, requires about 27 K bytes of memory after the language is loaded. (See listing 1.) I'll begin by describing how JETSET works and follow with a descriptive series of flight lessons.

Computer-Simulated Flight

The JETSET program lets the pilot activate the control surfaces of the jet aircraft, adjust engine thrust, and
tune navigational radio equipment by pressing a set of keys. (See table 1.) The program responds to the keypress commands by adjusting aircraft attitude to match the control surfaces and updating the instrument panel display every four seconds as the trajectory of the jetliner is tracked through space by the computer.

The jet instrument panel gives the pilot all the flight information he needs to take off, navigate, and land an aircraft using standard flight procedures and the radio facilities established for modern-day flying. The panel functions reveal what the aircraft is doing and where it is located, so that after a short period of training the pilot knows instinctively how to scan and interpret the panel data.

Position tracking, a vital ingredient in the simulation, is performed in real time to keep the flight situation up to date. Although the pilot completely controls the motion of the jet, wind forces that vary with altitude can influence the flight. The program uses an analytical combination of jet and wind motion to solve the "wind triangle" that is formed whenever an
aircraft is aloft and moving through layers of air．The wind－triangle solu－ tion yields the＂true＂motion of the jet relative to the earth＇s surface．

When the simulation begins，the jetliner is poised for takeoff on the runway at Philadelphia International Airport．The geographic coordinates of Philadelphia mark the starting point of flight．The computer fixes this initial position in memory and cranks out a new longitude and latitude 15 times a minute．The pilot controls the path of the jet during the takeoff roll down the runway．If everything is done correctly in the cockpit，this path will lead to a take－ off with room to spare．

Once airborne，the jet is tracked against a grid of meridians and parallels，an involved computation that requires the program to use spherical trigonometry because of the earth＇s curved surface．Because the geographic coordinates of airports and radio beacons are stored in the computer＇s memory，a comparison of positions yields the information it needs to update the instrument panel the pilot uses to navigate．

An instrument landing，the trickiest part of any actual flight，is also the most complex operation for the computer to simulate．This type of landing requires a programmed geometry to simulate the Instrument Landing System（ILS）pattern formed by special radio beams．These beams， which converge at the landing end of a runway，deflect an indicator on the instrument panel of the landing jet and give the pilot an exact path to follow during the final approach to the airport．

Because JETSET knows precisely where the pilot is telling the plane to go，the program will continue to run until the jet lands safely and rolls to a halt or until the flight ends in disaster． When the simulation has ended，for whatever reason，JETSET provides a complete report of the pilot＇s perfor－ mance．The report includes the land－ ing location of the plane－whether on or off the runway－to the nearest foot，and，in case of pilot error，a description of the error and the likely damage to the aircraft．

Listing 1：The program listing for JETSET．

1 FEM＝FFiGGFiAM NAME＝－IETSET
2 REM：IFF FLIGHT SIMILLATGF（EOEING 747）
EREM：CFEATEL OG－Z－E1 BY GENE EZYMANSKI I
4 FEM：FEVISELI O2－25－G2
\Rightarrow SYSTEM＂CLOLK OFF＂
10 GOTG10000
23 REM：EEGIN CRULISE MGHME HERE
24 CLS：CLEARZOOO：FAANHMM
25 LIM M（20）

27 FK $=1$ ：IFFNLU（ 1 ）（ 0 ．STHENF $S=-1$
2e FiW＝（15－5）＊FiNEI（0）＋5
29 FW＝F゙G\＃FiW
30 FEEM：SET LIF WINI TAEIE
32 ［IIM WA（10，1）

36FOFF $I=S T G 10: \operatorname{NA}(1,0)=\sigma O * F \operatorname{Na}(0)+225:$ NEXT
Es $A=0$

41 F＇S\＄（0）＝STRING（31，＂－＂）
42 $\operatorname{FiS} \$(1)=\mathrm{SF} \cdot \mathrm{ACE}(13)+"$ ．
$43 \mathrm{FFS}(2)=\mathrm{SF} \cdot \mathrm{ACE}(11)+{ }^{\prime \prime}$ ．
$(2)=$ SFACE $\$(11)+" . \quad$＂＋SFACE\＄$(13)$
44 Fis
45 FEM：VOFF STATION FFEES TAELE
46．LIIN VF（15）
$47 \mathrm{VF}(0)=115.7: \mathrm{VF}(1)=1.13 . \mathrm{G}: \mathrm{VF}^{\prime}(2)=112.7$
4E： $\operatorname{VF}(3)=117.7: \operatorname{VF}(4)=117.3: \operatorname{VF}(5)=112.2$
4 VF $(6)=117.4: \operatorname{VF}(7)=115.5: \operatorname{VF}(6)=116.4$
So VF $(9)=113.6: V F(10)=116.9:$ VF $(11)=117.0$
$51 \operatorname{VF}(12)=112.3: \operatorname{VF}(13)=117.7: \operatorname{VF}(14)=115.7$
$52 \operatorname{VF}(15)=112 . \mathrm{s}$
$\Leftrightarrow 2$ REM：ILS CINETANTS FGF AIFFGRTE
62 $\operatorname{LIMMG}(15,1)$
$64 V_{G}(0,0)=236: V G(0,1)=26$
6．VG $\bar{G}(2,0)=240: V G(2,1)=30$
$6 V(5,0)=90: V G(5,1)=217$
$71 \operatorname{VG}(7,0)=290 \operatorname{VG}(7,1)=16.4$
$72 \mathrm{VG}(3,0)=166: \mathrm{V}_{\mathrm{G}}(\mathrm{E}(\mathrm{B}, 1)=42$
79 V $6(15,0)=341: V 6(15,1!=75$
100 FEM：VOIF ETATION GGOFIINATES TAELLE
101 LIIM VF $(15,1)$
102 VF $(0,0)=40.693: V^{\prime}(0,1)=73.775$
$103 \mathrm{VF}(1,0)=40.202: \operatorname{VF}(1,1)=74.495$
$104 \mathrm{VF}(2,0)=42.356: V F(2,1)=70.093$
105 VF $(3,0)=41,292:$ VF $(3,1)=70.0,27$
$106 V^{2}(4,0)=42.743: V F(4,1)=7$ ． 802
$107 \operatorname{VF}(5,0)=46.412: \operatorname{VF}(5,1)=4.315$

109 VF $(7,0)=40.517: V^{\prime}(7,1)=17.95$
110 VF $(5,0)=42 \cdot \% \cos (5,1)=18 \cdot 1.47$
111 VF $(9,0)=41,35 \%: V^{\prime}(9,1)=3 \% 16$

113 VF $(11,0)=44$ ． $555:$ VF： 11,1$)=25.16$

115 VF $(12,0)=1,45: V F(13,1)=76,976$

117 VF $(16,0)=30,1,17: \operatorname{VP}(15,1:=14.303$

170 ［IATA ALTITMEE，FEET，CLINT：
175 IIM F＇क（2E）
1 EO FIFR $I=0$ TO $2 \mathrm{E}:$ REA［I F＇\＄（1）：NEXT
155 IIM 三क（25）
100 FGF $I=1$ TG 2S：S\＄（1）$=$ EFACE（1）：NEXT
102 FOF $I=0$ TO $\mathrm{O}: F(1)=0:$ NEXT
10 FREM：INIT FLITE VAFIIAELES TG STATE AT LIFTGFF
$196 \mathrm{FO}=195480: \mathrm{FF}=63: \mathrm{CO}=75: \mathrm{AE}=3 \mathrm{SO}: \mathrm{Fit}=6.704: \mathrm{AL}=1900$
$198 \mathrm{MZ}=77: \mathrm{TF}:=4: \mathrm{FL} .=1: \mathrm{FA}=10: \mathrm{EF}:=10: \mathrm{WH}=10$
$200 \mathrm{FA} A=0: \mathrm{AS}(1)=8 \mathrm{EO}: \mathrm{FA}(1)=10: C \mathrm{C}(1)=75: \mathrm{AL}(1)=1900: \mathrm{FF}:=40$

$204 \mathrm{EX}(0)=0: 0 Y(0)=0$
$205 \times 0=564 \mathrm{E} 1: Y$（ $1=0$

221 TW（1）＝T1
222 GUSUES35
224 FFINTEHF末（2）：GOGUE 600

302 Gubursoo
304 GUEUE1000
35 FEM：III FFLAY FANEL（HEALIERS GINLY）
340 FFINTE（0，З），F中（0）；छ\＄（4）；F中（

342 FFINTE（ 10,56 ），F＇$\$(14)$ ；S\＄（ 6 ）；F．$\$(14)$
54 FFINTE（ 12,56 ），F $\$(15) ;=\$(5) ; F \Phi(15)$

350 FFINTE（ 1, （E），FW（2E）

365 FFINTE（4，0），F＇\＄（3）
370 FFINTE（ $5,3 \%$ ），Fक $(22) ; \Xi \Phi(6) ; F \neq(25) ; \Xi \Phi(5) ; F \(27)

360 FFIINTE $(7,13)$ ，Fit（E）
SE1 FFINTE（
3：FFFINTE（5，6．4），＂LONIG＂
Listing 1 continued on page 304

Key Function
F Thrust increase*
S Thrust decrease *
Thrust reverse Pitch down* Pitch up* Pitch cancel Rudder left* Rudder right* Rudder cancel Flaps
W Wheels
B Brakes
M Missed approach
$V \quad$ VOR frequency tune
R VOR radial select
A VOR auto select

Definition

increases power applied to jet engines
decreases power
reverses engine thrust direction during landing lowers nose of aircraft by an angle of 5 degrees lifts nose by an angle of 5 degrees sets nose to level flight (horizontal) increases rudder angle to left by one increment increases rudder angle to right returns rudder to center position raises and lowers wing flaps raises and lowers landing gear releases wheel brakes for takeoff signals an aborted landing attempt inputs a frequency to VOR receiver selects a radial value for navigating automatically rotates the radial selector dial

Notes: 1. The TRS-80 keyboard CAPS key must be engaged throughout the simulation.
2. An asterisk (*) identifies keys that may be typed additional times to increase their control functions.

Table 1: Keys used for pilot control.

Figure 1: The instrument panel display during takeoff.

Flying Lesson \#1
 Taking Off

When you load JETSET into memory and type RUN, the screen will flash a message authorizing a takeoff from Philadelphia International on runway $9 R$. The screen will then display the upper section of the jet instrument panel and a perspective view of the runway as it would appear from the cockpit (see figure 1). At this point the jet is parked in the takeoff position with its engines
idling, ready to go when its brakes are released. (Note: The "CAPS" key of the TRS-80 keyboard must be engaged and remain on for all key commands used during the simulation.)

To prepare for takeoff, press the L key to lower the flaps and check the panel FLAP indicator. A down position shows that the wing flaps are now extended. The flaps provide the vital extra lift needed during landing and takeoff, when the jet airspeed is marginal. Next, release the wheel
brakes (W key). The jet will begin to move slowly because the engines are idling at only a fraction of their rated power or thrust. To apply full takeoff power, press the F key and watch the THRUST lever indicator move to its maximum forward position. The program will now apply acceleration to gradually bring the jet up to its rated takeoff speed, 150 knots (173 mph).

As momentum builds, the AIRSPEED indicator begins to register. The jet begins its takeoff roll down the 10,500 -foot runway. Soon afterward, the COMPASS indicator begins to deflect from its 075 degree reading as the jet is hammered by gusts of wind sweeping across the runway. This is a busy time in the cockpit because you must carefully steer the jet along the 200 -foot-wide runway strip as you come up to takeoff speed. A sliding arrow at the base of the runway graphic shows how far the jet is wandering from the runway centerline. Use the rudder keys (< and $>$) to steer the jet via its nosewheel whenever this arrow veers away from the center position. The arrow will shift left or right whenever the compass reading deviates from the 075 degree direction of the runway. Careful steering, then, is an exercise in coordinating both keys with the compass reading and the runway graphic (each press of a rudder key alters the direction of travel by one degree).

Assuming that the jet doesn't veer off the runway (which would end the flight), you must be ready to execute the lift-off maneuver when the airspeed reaches 150 knots, at which point you press the $!$ key once, and once only, to tilt the nose up 10 degrees. The jet will lift off just before the end of the runway moves to the bottom of the screen, and the horizon line will vanish.

Immediately following the lift-off, you must execute a three-step sequence to gain altitude promptly:

1. raise the landing gear (W key) to reduce "drag" (air friction)
2. retract the wing flaps (L key)
3. reduce the thrust (S key) to attenuate engine noise-in accor-

Figure 2: The full instrument panel display.

Instrument	Units	Function
FUEL	pounds, \%	fuel aboard (in pounds and percentage full)
VHF	MHz	communications channel
THRUST		position of engine thrust levers
PITCH	--	attitude of aircraft pitch
DEG	degrees	angle of pitch, measured from horizontal
COMPASS	degrees	compass heading of aircraft (direction of nose)
AIRSPEED	knots	aircraft velocity through the air
VERT SPEED	feet/minute	rate of climb or descent
ALTITUDE	feet	aircraft altitude
CLOCK	hr.min.sec	time of day (local time)
VLF OMEGA	degrees and minutes	aircraft position (latitude and longitude) in degrees and minutes of arc
RUD	--	rudder angle
FLAPS	-	flap position
WHEELS	--	landing gear position
BRAKE	--	position of wheel brakes
VOR	MHz	frequency to which VOR receiver is tuned
RANGE		displays status of VOR receiver
RADIAL	degrees	value of selected radial (needle moves along window directly above RADIAL)
DME	nautical miles	distance to VOR ground station
RADAR ALT	feet	aircraft elevation during final approach
MARKER	--	turns on when flying directly over the ILS outer and middle marker beacons
ILS	--	pair of needles that deflect according to aircraft position in ILS radio cone
STALL	- -	flashes when aircraft is stalled during final approach

Table 2: Instrument panel legend.
dance with federal antinoise reg-ulations-as the jet passes over metropolitan Philadelphia

You must perform this sequence in the above order because the three keys are software-interlocked. In addition, you must complete the three steps before the ALTITUDE indicator reads 1200 feet. If you do everything correctly, the screen will erase to in-
dicate a successful takeoff and a display of the complete instrument panel will appear. (See figure 2.)

Takeoff Mishaps

JETSET doesn't introduce random flight emergencies, but the simulation will abort with a grim message if you mishandle the jet. Using the built-in program specifications of a Boeing 747, the equations of motion dictate
that it takes 63 seconds to reach takeoff velocity (150 knots) after full engine thrust is applied. During this interval, the accelerating jet uses up 80 percent of the two-mile runway.

This equation of motion establishes the safe takeoff envelope for the simulation. You must use the ! key promptly when the airspeed reaches 150 knots. If you hesitate for another 10 seconds, it will be too late-the jet will simply charge down the runway at 172 knots, plunge into the marshlands beyond, and . . you get the picture.

The anxious pilot who pulls the nose up too sharply at lift-off time (by pressing the ! key more than once) also comes to grief. The abort message will point out that the tailend of the fuselage has struck the runway; the aft end of a 747 will clear the ground by only a few feet during a normal takeoff. Most important, as pilot you must always remember to lower the wing flaps before you attempt to take off in a 400-ton jet, even in a simulation.

Flying Lesson \#2

Maneuvering

Following the takeoff, the jet slowly gains altitude as it passes over central New Jersey and heads toward the Atlantic coast. None of this geography is visible, of course, because of the blanket of clouds below. At this point, you must navigate the jetliner entirely on instruments until it's just a few hundred feet from the point of landing at the destination airport, wherever that may be.

This lesson will give you a "feel" for the controls and show you how they relate to the instrument panel functions. (See table 2 for a list of controls.) The PITCH indicator shows that the nose is tilted upward (positive pitch) at an angle of 10 degrees. With the current position of the THRUST lever, the jet is gaining altitude at the rate of 6704 feet per minute (VERTICAL SPEED). Press the 1 key twice to level the nose to a zero-degree pitch. The AIRSPEED will now increase, VERTICAL SPEED will become zero, and the ALTITUDE will remain constant. The ! and I keys, which correspond

Takeoff Procedure
A. Lower flaps (L key).
B. Release brakes (B key).
C. Apply full throttle (F key).
D. Steer along the 075-degree runway using left/right rudder keys (< and >). Coordinate steering with the COMPASS reading and the position of the arrow located at the base of the runway graphic.
E. As soon as the AIRS PEED indicates 150 knots, press the I key once to gently lift the jet off the runway.
F. After the horizon line drops below the screen, press the W key to raise the landing gear.
G. Retract the flaps (L key).
H. Throttle back the engines (S key).
I. Sit back and relax for a minute or so as the jet gains altitude.

Practice Flight

A. Execute the takeoff from Philadelphia.
B. Level off at 10,000 feet.
C. Steer approximately north.
D. Adjust airspeed to 600 knots.
E. Tune to the frequency of the Buffalo VOR station.
F. Input the reciprocal value of the 115-degree radial into the receiver.
G. When the VOR needle moves to center, alter course to 295 degrees (COMPASS).
H. Now steer to keep the VOR needle centered. This indicator, not the compass, will provide exact guidance for the remainder of the flight.
I. Use the DME indicator to keep track of distance remaining, in nautical miles, to Buffalo. To estimate the remaining flying time (in minutes), simply divide the DME reading by 10 .
J. When the DME readout reaches zero, the jet has arrived.

Instrument Landing

A. Execute the takeoff procedures.
B. Follow the directives given in the Flight Plan (figure 7) for the intended destination (Buffalo, NY or JFK International). This will lead the flight right up to the ILS Outer Marker along the initial approach radial.
C. Begin the initial approach, trimming as soon as the DME readout agrees with the value given on the Flight Plan (20 nautical miles for JFK International Airport). Trim as follows:

- Reduce airspeed to 300 knots (S key).
- Drop the landing gear (W key).
- Lower the flaps (L key).
- Adjust altitude to between 1700 and 1900 feet (elevator keys).
- Keep the VOR needle centered (rudder keys) to stay on the initial approach radial.
D. Be alert for the flash of the MARKER lamp (which occurs when the $D M E=12$). At this signal the jet must be maneuvered for the final approach:
- Quickly swing the nose until the compass agrees with the localizer direction shown on the Flight Plan.
- Use rudder and elevator keys to keep the ILS indicator needles centered as the jet descends along the glidepath.
- As soon as the runway graphic appears on the screen, use the graphic arrow as a guide to apply rudder corrections.
E. When the MARKER lamp flashes again to announce arrival at the decision-height point, check the runway alignment using the graphic displayed on the screen. If necessary, press the M (Missed Approach) key to abort the landing attempt. Otherwise, if the plane is lined up safely, take all cues from the RADAR ALT from here on in:
- At 100 feet, idle the engines (S key).
- At 50 feet, flare up the nose (key).
- At 0 feet, the jet is on the runway. Slow it down by applying reverse thrust to the engines (Q key).
to motion of the pilot's control stick, are used to climb or descend to a new altitude. Each press of the 1 key pushes the nose down another 5 degrees, causing a rapid loss of altitude as both airspeed and vertical speed build up. Regardless of the maneuver-climbing or diving-you should always use the \rightarrow key to quickly level off the jet when the ALTITUDE readout reaches the desired value.

You can steer the jet to a new COMPASS course by pressing the keys that control rudder angle. Press the < key once to begin a slow turn to the left and watch both the COMPASS and the rudder-angle indicator (RUD). Each additional push of the rudder key will make the angle more acute, causing the COMPASS to swing faster as the rate of turn increases. Always use the rudder-cancel key (/) to stop further turning as soon as the COMPASS indicates the desired course.

You can adjust AIRSPEED by moving the thrust lever forward or backward (F and S keys) one step at a time. Each tap of the key shifts the position of the arrow displayed on the THRUST indicator and alters the AIRSPEED reading. The 747 normally cruises at 600 knots, and for a given thrust setting the AIRSPEED indication will drop back during a climb and increase during descent.

Because the instrument response time is 4 seconds, you must delay consecutive applications of the stick or rudder keys until the panel instrument readings catch up. The jet will automatically level off when it reaches an altitude of 45,000 feet; a dive to ground level while cruising, however, will abort the flight with a simulated crash.

In a plane, the VLF OMEGA indicator is part of an electronic subsystem that receives and correlates specially phased, very-low-frequency radio waves. These waves, which propagate over great distances, are processed in the airborne receiver to give the pilot a continuous display of the changing position of the aircraft. The JETSET simulator tracks aircraft motion as the sum of two vectors: aircraft movement relative to the wind

(compass heading and airspeed) and wind movement relative to the earth's surface. As a result of this tracking, the longitude and latitude displayed by the OMEGA readout can fix the exact geographic position of the jet as it is maneuvered through computersimulated winds. This process results in an effective real-time simulation of the actual OMEGA system.

Although the longitude and latitude displayed on the OMEGA indicator may be used along with any chart or road map to check the progress of the simulated flight, the actual OMEGA system is normally used for flying between continents. For short-range and cross-country flights, most aircraft - and the JETSET simu-lator-rely on a more convenient system popularly known as VOR (VHF Omnidirectional Ranges).

Flying Lesson \#3

Navigating

Most aircraft navigate from point to point using VOR radio facilities. A ground station transmits radio beams that radiate horizontally outward in
all directions like the spokes of a wheel. Each spoke or radial (there are 360) is fixed in direction and can be used to provide an accurate and unvarying path to its source, the VOR station transmitter.

In practice, the pilot first tunes the VOR receiver to a ground station located at or near the destination. Each station is assigned a unique frequency. Next the pilot adjusts the receiver's radial selector dial to match the particular radial intended for use as a path (this dial is calibrated in one-degree steps, from 000 to 359 degrees). The pilot then flies while watching the needle of a sensitive meter connected to the VOR receiver. When the needle moves to its center position, the aircraft has intercepted the selected radial. By altering the course to keep the VOR needle centered, the pilot will be able to guide the plane directly along the radial in a straight line toward the VOR transmitter.

Figure 3 shows you how to navigate to Buffalo, New York from Philadelphia International Airport.

First tune the VOR receiver to 116.4 MHz (the frequency assigned to the Buffalo VOR station) and select the desired radial, 115 degrees in this example. Rotate the radial dial until it points to 295 degrees, the reciprocal value of $115(115+180=295)$. (The reciprocal value is always used when setting the selector dial to match the chosen radial. This process gives the VOR receiver proper internal orientation.)

Once tuning is completed, you fly in an approximate northerly direction and watch the movement of your VOR panel indicator. Initially the needle will be "pegged" to the right side of its travel, but it will slowly begin to move toward the center as the plane nears the 115-degree radial. Once the needle is at center, alter your course to 295 degrees by compass and swing the nose of your jet toward Buffalo. Now you must make minor steering corrections, using the rudder to keep the VOR needle centered.

This needle, rather than the compass reading, provides the guidance
for the remainder of the trip. Upperair winds will generally deflect the heading (compass course) of the jet from its actual track over the earth's surface, but if the plane is flown with the needle centered, the path of travel will remain exactly on the 115-degree radial. The compass reading may differ by a dozen or more degrees when you are flying at upper altitudes in the presence of high-velocity jet streams.

The process of adjusting the steering to keep the VOR needle on center is called "chasing the needle." If the needle (which represents the radial) begins moving to the left, you must apply some left rudder until the needle returns to center. For needle deflection to the right, steer to the right. After a minute or two you should be able to establish a compass heading that keeps the VOR needle centered until the jet arrives in Buffalo.

The VOR system carried aboard a jetliner includes a very useful and important device known as the DME (Distance-Measuring Equipment). Once the VOR receiver is tuned to a station, the DME indicator continuously displays the distance in nautical miles (NM) to that station. In a flight to Buffalo, for example, the DME would read about 180 NM when the northward-flying jet first intercepted the 115-degree radial. From then on, as the pilot steered toward Buffalo the DME value would progressively decrease in step with the aircraft's position until the reading reached zero. A zero reading would indicate that the jet had flown over the VOR station. The DME readout would then slowly begin to increase as the pilot passed by Buffalo.

The simulator VOR receiver is tuned and adjusted from the keyboard. To tune to a station, first press the V key, then type in the station frequency. The typed characters will echo on the screen; to correct them, use the Backspace key. Finally, press Enter to terminate the input. To tune in the Buffalo station, type the 6-key sequence V116.4 followed by the Enter key.

A similar procedure sets the VOR receiver to any selected radial except

S-100 USERS KNOW \& ARE SPREADING THE WORD:

For any S-100 bus computer

the MM-103 is the modem to use!
In fact, most of our new sales are referrals from satisfied customers.

TRY THE MLM-103 FOR 10 DAYS!
If you're not satisfied, return it for a full refund. But, if you find what others have discovered - that the MM-103 is tops in performance \& reliability

- The MM-103 is a direct connect. S-100 compatible, Bell 103 standard modem, with auto originate and auto dialing.
- MM-103 works with the widest variety of public-domain and commercial software, featuring selectable modes, parity and baud rates ($61-600$ baud) for unsurpassed flexibility.
- You can expect off-the-shelf, UPS-fast delivery. Order with check, VISA, MasterCard or COD.
- MM-103 is installed in minutes. A call to our 24 hour a day modem test center (703-379-0303 at 300 baud) allows immediate test \& verification of operations.
- MM-103 comes with an unbeatable warranty with speedy repairs - a service needed by less than 5 percent of boards sold.

5201 Leesburg Pike, Suite 604
Falls Church, VA 22041
(703) 379-9660

the 10-Megabyte Computer System

 Only $\$ 5995$

COMPLETE

New From IMSAI ${ }^{\circ}$

- 28-Amp Power Supply
- 10.Megabyte Hard Disk
- $51 / /^{\prime \prime}$ Dual-Density Floppy Disk Back-up
- 8-Bit Microprocessor
(Optional 16-bit Microprocessor)
- Memory-Mapped Video Display Board
- Disk Controller
- Standard 64 K RAM
(Optional 256K RAM)
- 10-SIot S-100 Motherboard
- 12" Monitor
- Standard Intelligent 62-Key ASCII Keyboard (Optional Intelligent 86-Key ASCII Extended Keyboard)
- 132-Column Dot-Matrix Printer
- CP/M* Operating System

You Read It Right ... All for \$5995!

[^0]

Electrostatic discharge, in addition to causing problems like the one above, can damage delicate electronic control and logic circuits. It takes so little voltage that you might not even feel the spark.

As little as 500 volts can send erroneous data, alter "memry", write incorrect data on a disk, or cause printers to run wild, throwing paper into the room. All of which means expensive service calls and even more expensive system down time.

Only 500 volts, yet you can easily generate over 12,000 volts of static charge just walking across a carpet. Even on a vinyl floor, 4000 volts is not uncommon.
The solution is simple
3M Brand Static

harmlessly draining the
static charge from opera-
tors and other personnel.
For as little as the cost of a single static-related service call, you can say goodbye to all these problems.

3M Brand Static Control Floor Mats come in hard mats for easy movement of castered chairs, and soft mats for comfortable standing.

For information about how you can purchase 3M Static Control Floor Mats, call toll free
1-800-328-1300
(In Minnesota, call collect 612-736-9625.)
Ask for the Data Recording Products Division.
3M Hears You...

that you type R first rather than V. To adjust the receiver for the flight to Buffalo, type R295 followed by the Enter key.

The RANGE window of the VOR receiver displays OUT whenever the receiver is not tuned to any station or whenever it is tuned to an incorrect frequency. An OUT also appears if the receiver is tuned to a VOR station whose distance exceeds 300 NM , the maximum range of the VOR signals.

Flying Lesson \#4

Practicing VOR
Several practice flights to Buffalo on the JETSET simulator will acquaint you with the simple principle of VOR navigation. Although it isn't necessary, a chart or group of road maps that encompass the BuffaloPhiladelphia area would help you visualize the progress of the jet.

Begin by taking off from Philadelphia, climbing to about 10,000 feet, and leveling off. Then apply the left rudder until the compass reads 000 , give or take a few degrees. While you're on this northerly course, adjust the thrust (F and S keys) for an airspeed of 600 knots.

Tune to the Buffalo VOR station by typing V116.4 and the Enter key. Set the receiver for the reciprocal of the 115 -degree radial by typing R295 followed by Enter. This completes the tuning procedure. The VOR needle, which is located directly above the RADIAL window on the display, will now remain pegged to the rightmost position for about seven minutes as the jet flies north.

Once the VOR needle begins moving toward the center of the graphic slot, prepare to alter course. When the needle reaches center, apply the left rudder (< key) and bring the jet on a compass course of 295 degrees. Remain on this course for about a minute and watch the motion of the VOR needle. Now you can begin chasing the needle by applying the rudder corrections needed to center the needle and keep it there. You may need to make an occasional steering adjustment if the needle begins to wander, but as long as it remains within one dot of center (each dot
represents one degree), your course will be reasonably accurate.
When the Buffalo radial is first intercepted, the DME indicator should read approximately 180 NM , and it should take about 18 minutes for the $600-\mathrm{knot}$ jet to reach its destination. The exact flying time, of course, will depend on the strength and direction of the prevailing winds, but the DME readout will always show the exact remaining distance. If you use a map to keep tabs on the practice flight, remember that DME distances are nautical (not statute) miles. A DME reading of 100 NM corresponds to 115.2 statute miles.

As the jet moves along the radial, the RANGE window of the VOR panel will display TO, indicating orientation toward the VOR station. As soon as the DME reads zero, note the reading of the OMEGA display. Because the jet is passing directly over the ground station, the display should read $42^{\circ} 55^{\prime}$ North, $78^{\circ} 38^{\prime}$ West, equal to the geographic coordinates of the VOR station. This reading confirms that the navigation was accurately performed by the VOR system. If you have maintained the course, a FROM will appear in the RANGE window as the jet proceeds in a westerly direction away from Buffalo, New York.

Flying along Airways

Although I used the 115-degree radial for the practice flight to Buffalo, I could just as well have chosen other radials for guidance. For example, a map shows that the 140 -degree radial passes directly through Philadelphia and would therefore reduce the flying time if it had been used as a path. I selected 115 degrees instead because it is designated as a jet route by the FAA (Federal Aviation Administration). The FAA has established a network of special radials that high-altitude jets must use when flying on instruments. An aviation chart reveals that radial 115 from Buffalo corresponds to jet route J-95 when the radial direction is adjusted for the earth's magnetism (the JETSET program works with true, not magnetic, directions).

In order to comply with regulations, an actual high-altitude flight from Philadelphia to Buffalo might require the pilot to proceed as follows:

- fly toward Philipsburg, Pennsylvania along jet route J-60 (as shown in figure 4)
- alter course at Philipsburg to pick up jet route J-61, which leads directly to Buffalo

During the first leg of the trip, the pilot would tune the VOR receiver to 115.5 MHz , the frequency of the Philipsburg ground station, and fly along the J-60 radial (278 degrees). Just before the pilot reached Philipsburg (as shown by the DME indicator), he would retune the receiver for Buffalo (116.4 MHz) and adjust it to the radial that corresponded to jet route J-61 (346 degrees). The pilot would then alter his course,
chasing the needle to follow radial 346 until he arrived at Buffalo.

Numerous VOR stations scattered throughout the country enable a pilot to fly extended distances simply by hopping from one station to the next, retuning the receiver to locate the designated jet routes. JETSET, however, needs only a handful of VOR stations to establish a network for instrument flight simulation. Figure 5 shows the frequencies and locations of the VOR stations built into the program. You may use any of these VOR stations for practice flights to the given cities or as steppingstones for navigating from city to city. (Remember that a tuned-in VOR station must be within 300 miles to activate the airborne VOR receiver.)

The VOR receiver in the JETSET simulator is as versatile as its real-life counterpart. When a pilot is lost or disoriented the receiver can be tuned to a VOR station and the radial-
selector dial rotated until the needle of the VOR meter centers. The reading shown on the radial dial then represents the direction from the VOR station. Combining this with the distance read on the DME indicator results in an exact position "fix."
In the JETSET simulator a press of the A key results in an exact position fix. The program automatically rotates the invisible radial-selector dial for the pilot and quickly displays the direction from the tuned-in station in the RADIAL window.

Instrument Landing

Using the VOR receiver as a guide, a pilot can navigate accurately from one city to another without any view of the earth below. VOR radials are suitable for point-to-point navigation, but when a pilot arrives at his destination he needs another system of guidance to get to the airport run-

Figure 5: Locations and frequencies of simulated VOR ground stations.
way itself. In this case, the pilot must revert to a radio aid, the Instrument Landing System (ILS), a facility designed to make blind landings possible. A trained pilot flying an aircraft equipped with an ILS receiver can locate an airport and safely land on a runway that may not be visible until a minute or so before the actual touchdown.

An ILS installation consists of a group of radio transmitters arranged in the vicinity of the airport where ILS landings are to take place. These transmitters radiate highly directional radio beams that converge at the foot of the runway, forming a coneshaped pattern like the rays of a searchlight (see figure 6). The pilot first maneuvers the plane into this invisible cone, then uses the ILS receiver to follow the radio waves duwn until the aircraft is just a few hundred feet above the ground. At this low altitude the runway should be visible, so the actual landing can be completed in the usual way.

The airborne instruments used to locate and follow the cone of radio waves are a marker lamp, an ILS indicator, and a radar altimeter. On the JEISET simulator panel these three components are identified as the

MARKER, ILS, and RADAR ALT respectively. The panel MARKER lamp flashes on when the aircraft flies over a point called the "outer marker" (OM in figure 6), telling the pilot that the plane has just entered the ILS cone. The crosshairs (horizontal and vertical needles) of the panel ILS meter will now begin to deflect, and the pilot mnust maneuver the plane to keep the needles centered in order to follow the path of the ILS radio cone. As the aircraft descends along this narrow path, the radio altimeter (RADAR ALT) gives a continuous display of the exact elevation from the ground (in feet). The radar altimeter is much more sensitive than the conventional altimeter, so it is always used for precision landings.

During the time the aircraft has entered the ILS cone and is heading toward the runway, when the pilot is making the final approach, the plane flies in a direction known as the "localizer" direction of the ILS radio beams. The angle that the radio cone makes with the ground is called the "glideslupe" angle, and the descending plane is said to be flying within the ILS "glidepath." The two moving needles of the ILS indicator correspond to the localizer and glideslope
axes during the final approach. The pilot chases the vertical needle (which moves left and right) to remain aligned with the localizer direction. The horizontal needle (which deflects up and down) must be chased using the elevator controls to keep the plane within the glidepath.

Once the descending aircraft reaches the ILS "middle marker" (labeled as MM on figure 6), the panel MARKER lamp will flash again, alerting the pilot that the plane is just a fraction of a mile from the runway. This critical location is called the "decision height" of the final approach because the pilot must now decide whether he can safely complete the landing. If the runway appears in view directly ahead, the pilot can make a visual landing. If, however, the plane is not properly lined up with the runway (because the ILS needles were not kept centered), the pilot must abort the landing attempt at once by climbing out of the glidepath. This situation is known as a "missed approach." When a pilot misses the approach, he flies a safe distance away from airport traffic and then returns to the OM point for another try.

Every ILS-equipped airport uses

Figure 6: ILS (Instrument Landing System) geometry showing the localizer direction (a); ILS geometry showing the vertical glideslope angle (b).
the geometric layouts shown in figure 6 for its instrument landing pattern, with minor variations to suit the terrain. The exact ILS arrangement (localizer direction and glideslope angle) for any given airport is published in a manual of approach diagrams (one for each airport), which the pilot studies well in advance of his instrument landing.

Obviously, an instrument landing is a tricky procedure that airline pilots must practice in large-scale simulators to perfect. The routines that simulate landing are an important part of the JETSET program; they closely follow the sequences that develop when a plane flies into the ILS pattern. You may have to make several attempts at a simulated land-
ing before you can consider yourself qualified to handle a jetliner under bad weather conditions.

Flying Lesson \#5

Practicing ILS

Preparing for an instrument landing, even aboard the JETSET simulator, begins when the plane is still
many miles away from the airport. Because all ILS landing procedures follow a standard pattern, the John F. Kennedy (JFK) International Airport, conveniently located with respect to Philadelphia, can serve as a practice
landing site. A simulated flight from Philadelphia to JFK lasts about 20 minutes from takeoff until the jet rolls to a stop on the runway.

Every airline flight must be conducted in accordance with a flight

Philadelphia, PA To Buffalo, NY

1. After takeoff, continue climbing to 3000 feet on course 075 degrees.
2. At 3000 feet alter course to 000 degrees and continue climbing. Adjust thrust for airspeed 580 knots, tune VOR to Philipsburg station (115.5 MHz), and set radial to 278 degrees.
3. Steer along 278 -degree radial when intercepted. Level off at 40,000 feet and proceed to Philipsburg at 600 knots.
4. At DME $=20 \mathrm{NM}$, retune VOR to Buffalo (116.4 MHz) and set radial to 346 degrees.
5. Upon intercepting 346-degree radial, alter course to follow radial to Buffalo.
6. At DME $=73$ NM, begin descent to 1900 feet (descend at approximately 11,000 FPM).
7. Level off at 1900 feet. Remain aligned with radial.
8. Begin initial approach trim when DME $=20$ NM.
9. Execute ILS final approach procedures when MARKER lamp flashes. Localizer direction is 042 degrees.

Philadelphia, PA To JFK International, NY

1. After takeoff, continue climbing to 6000 feet on course 075 degrees. While climbing, tune VOR to JFK station (115.9 MHz) and set radial to 058 degrees.
2. Level off at 6000 feet. Steer left to intercept radial, align with it, and proceed toward Long Island, NY at 400 knots.
3. At DME $=38 \mathrm{NM}$, begin descent to 1900 feet (descend at approximately 7410 FPM).
4. Level off at 1900 feet. Remain aligned with radial.
5. Begin initial approach trim when $D M E=20 \mathrm{NM}$.
6. Execute ILS final approach procedures when MARKER lamp flashes. Localizer direction is 028 degrees.

Figure 7: Flight plans for a simulated instrument flight.
plan, a document that specifies the routes the pilot will fly until he arrives at the destination. An actual flight takes place at standard altitude levels and under close supervision of air traffic controllers, but the flight plan prepared for the practice run to JFK International tells the JETSET pilot exactly how to proceed. (See figure 7.)

Using the Philadelphia-JFK flight plan as a guide, execute the takeoff procedure and climb to 5000 feet while maintaining a compass course of 075 degrees. During the climb, tune your VOR to the JFK ground station (115.9 MHz) and input the radial value of 058 degrees.

Level off at an altitude of approximately 6000 feet. Use the < key for the left rudder to alter the compass course to approximately 000 degrees. Hold this course until the VOR needle nears its center position. Now steer to 058 degrees and begin chasing the VOR needle.

The jet will head directly for JFK as long as you keep the VOR needle centered-the 058 -degree radial is used because it's the "initial approach" radial defined for the JFK airport. It will lead to an intercept with the runway outer marker (OM), a prerequisite for the instrument landing.

As soon as the DME indicator reads 38 , you must prepare for landing. To begin a descent, adjust the elevators for a pitch of -10 degrees (press the 1 key twice) and level off at an altitude of about 1900 feet.

Start the "initial approach trim" procedure for the jetliner when the DME distance is 20 NM. First reduce your airspeed to 300 knots (S key), lower the landing gear (W key), and lower the wing flaps (L key). The airspeed will automatically drop back to 120 knots as soon as the flaps are lowered, as required for a proper landing. Complete the trim procedure by adjusting altitude until the ALTITUDE indicator reads between 1700 and 1900 feet.

You must execute this procedure quickly so that the aircraft is in its proper "profile" or flight configuration as it approaches the OM along the initial approach radial. You will
reach the OM when the DME reads exactly 12 NM , so the jet should be in its trim profile and steered to keep the VOR needle centered (to within two graphic dots) as the OM point nears.

If you've done these steps carefully, the panel MARKER lamp will flash when the DME indicator reads 12 NM. This is a signal that the aircraft has just intercepted the ILS radio cone and must be promptly steered to align with the localizer direction (028 degrees) at JFK airport.

Press the left rudder key ($<$) quickly when the MARKER lamp flashes. It's imperative that you swing the jet to a compass course of 028 degrees before it flies out of the narrow area of the radio cone (this would occur about 15 seconds after the MARKER lamp turns on). A compass reading of 028 degrees (give or take one degree) before the MARKER lamp goes off will ensure that you completed the turn in time for the jetliner to enter the ILS radio cone. Both the ILS indicator and the RADAR ALT meter should be activated. If not, the turn
took too long to complete and you need more practice in making a fast turn. For another attempt, you can stop the simulation program and begin again or raise the flaps and wheels and circle back to pick up the initial approach radial for another attempt.

The rapid updating of the ILS indicator means the jet is now beginning its crucial final approach. You have very little margin for error. The program will automatically change the sensitivity of the elevator and rudder keys; each press of the elevator key varies the pitch by one degree and the course changes by one degree each time a rudder key is typed. Quickly press the I key three times to pitch the nose down 3 degrees and turn your full attention to the ILS display.

You must use the rudder keys to chase the vertical needle of the ILS indicator as the jet loses altitude (as shown by the RADAR ALT reading). If the ILS horizontal needle moves from center, chase it by using the
elevator keys. Crosswinds blowing across the airport will tend to deflect the jet (and the vertical ILS needle), so you must make every effort to keep the two ILS needles where they belong-exactly on center.

The RADAR ALT indicator, a meter that activates when the final approach begins, shows the elevation of the descending jet (feet above ground level). At an elevation of about 600 feet, JETSET will display the approaching runway on the lower-right portion of the screen to simulate that the ground is now visible. The arrow appearing at the foot of the graphic shows the exact alignment of the jet in relation to the approach end of the airport runway. You must now use this visual reference instead of the ILS indicator to quickly correct any course errors. For example, if the arrow extends too far to the left, beyond the runway base, apply some right rudder to realign the jet's path.

After a few more seconds the MARKER lamp should flash again to

announce that the plane has just reached the middle marker point along the approach path, the decision-height location. Now a quick decision is vital. If the arrow of the runway graphic extends too far left or right, beyond the runway base, the jet is not properly lined up for a safe landing and you must press the M key immediately to signal a missed approach to the computer. JETSET will comply by announcing that the pilot's decision was a correct one for the landing situation.

If however, the runway arrow shows that the jetliner is safely aligned for a landing, you must bring it down as follows:

1. At an elevation of 100 feet (RADAR ALT reading), press the S key once. This command will "chop the throttle" (abruptly reduce the engine thrust to idle).
2. At 50 feet, press the \rightarrow key once to "flare up" the nose of the jet. This maneuver automatically tilts the aircraft upward slightly to a positive pitch, causing a controlled stall. The jet will now sink gently down to ground level as it loses aerodynamic lift.
3. At 0 feet the jet has landed and is rolling along the runway. Quickly press the Q key to apply reverse thrust to the engines. Reverse thrust decelerates the aircraft gradually until the AIRSPEED readout reaches zero.

Your JETSET flight concludes with a display of the landing information that tells you how well you handled the jet. This information specifies where ground contact occurred and where the jet finally rolled to a halt. If you made a mistake at the middle marker, the landing report will point out the consequences.

The author has offered to make copies of his program available to BYTE readers for $\$ 8$. Send a blank disk, a check, and a selfaddressed, stamped envelope to

> Eugene Szymanski 693 Rosedale Rd. Princeton, NJ 08540

Winston could have sworn a "FIFO Buffer" was a headache remedy.

Until he became an Orange Micro Printer Expert.

Printers Can Be
Confusing. Sometimes, even
the informed personal com-
puter owner is caught short
by the mound of technical dif-
ferences in printers. In one
visit, Winston learned that a
Fifo Buffer overlaps the
computer and printer
furctions, allowing Mr.
Hollingsworth to enter
his wine list while his
stock report is printing.
We Educate First.
With so many dif-
ferent printers out
there with as many different
features, we feel a printer educa- and a complete selection
of cables, options and inter-
face accessories, we have
everything you need to get
tion is in order. We take what you
already know about computers and explain
printers in the same terms. Our current
customers seem to like that because of the mow printer right for you, you'll linow exactly why you picked it from all the rest. With over 35

Listing 1 continued from page 273

3E FOFX＝2TG4ETEF 1 S
SW7 FOFY＝10TGZ
EGFFINTE（Y，X），LHFi（ 14 E ）；
NE NEXTY
3% NEXTX

子 FFINTE（ 10,3 ），＂VOF＂：FFFINTe（11．44），＂MHZ＂
GFFINTE（ 14,6 ），＂FANGE＂

FFFINTC（ 1%, ），＂FALIIAL＂
豸た FFINTE（ $21,3 \%$ ，＂LIME＂：FFINTE（22，44），＂NM＂；
37 FOFY＝ 1 TG7：FFINTE（Y，12），EHF\＄（150）：NFXT
OE FOFY＝1 TG：FFINTE $(Y, 21)$ ，EHF\＄（150）：NEXT

402 FOFX＝OTO1心GTEF1ヶ
404 FIFY＝15TO21
40に FFFINTE（Y，X），LHFW（ 143 ）；
4 OE：NEXTY
410 NEXTX

414 FFiINTe（ 13,7 ），＂IL：

$41 \mathrm{~B} X(1)=0$ ：$\overline{\mathrm{F}} \mathrm{Y}(1)=0$
420 EOOURE100
42 FFINTEHF $\$(2 \boxed{*})$ ：FFINTE（ 10, ふ），＂

425 FFINTE（ $10,1 \Xi$ ），＂
5，FETIIFN
EOO FEM：IIEF＇LAY INETFILMT FEALIINGG
（0）GOTTIT20

$610 \mathrm{YF}=1: \mathrm{XF}=7: \mathrm{F}$＝$=$＂\＃\＃\＃＂：V1＝FF：

次 YF＇＝4：XF＇＝4に：F\＄＝＂\＃\＃\＃\＃\＃\＃＂：V1＝FC：

た40 FEM：IIISFLAY THFIIIET
家 0 FIFi I＝1 TO 7
に1 FFINTE（I，11），IHFiक（2た）；＂＂
K NEXT
ESGFINTE（TF，11），＂こ＂；
KG FEM：IITEFLAY FLAFE

に70 FFINTE（FL，20），＂り＂
－ 74 F \＄＝＂＋\＃\＃\＃
$675 \mathrm{YF}=5: \times F=20: \cup 1=F A: 51101 \mathrm{~B} \quad \Rightarrow 000$
た．7た IFF（た）＝OTHEN
677 IF
67： $5 x=25$

KEO FEM：IIEF＇LAY BFAAKES

GFFINTE（BF，54），＂り＂
700 FEM：WHEELE

710 PFINTE（WH，に2），＂ソ＇
711 IFF（2）＝ 16010172
712 FEM：II SFLAY LAT／LINGIT

717 FFiINTE（4，7E），＂N＂
71Ξ FFiINTE（E1，7：
71% にiOTOİご
720 FEM：［IISFLAY FIULILIEF FNEIT
721 FFINTE（7，32），たHF\＄（2に）；S\＄（17）

$72 \mathrm{IFF}(2)=1$ THENFETIIFN
724 FEM：IISFLAY VITH VALIIES

72 FFINTE（ $13,3 \%$ ，にHFi $(2 に)$ ；VII（ 1 ）；にHFi (25)

$7 \leqslant 1$ FFINTE（ 17 ，VI（2）），EHFW（ 15% ）
FETIFN
（0）FIEM：イEY FOILL EUBFIOUTT

E11 IFK $\$=" /{ }^{\prime}$ THENFA $A=0:$ BOITOE

BO IF ト\＄＝＂W＂THEN KK＝4：TOTO BO

Gこ IFK $\$=" F "$ THENK $=$＝

64 IFASE（K $\$$ ）$=2$ THENFF：＝11：GOTEF
850 ONFK $0011800,908,914,928,931,95,940,944,946,950,963$ ES FETIIFN
OO FEM：THFIUET REY

OH IFTF 1 THENTF＝1：FETIIFN
GOに IFTFi\％にTHENTFi＝に：FETIIFN
GO7 FETIIFN
$\because O E$ FEM：FILLLIEF REYE
GO\％IFK $\$=$＂，＂GOTUF1 SEL：EEFA $A=F A+1$
$\Rightarrow 10$ IFFAA 4 THENFA $=4$
$\theta 11$ FETILFN
$\because 12$ FA $A=F A-1$ ：IFFA -4 THENF $A=-4$
$\because 13$ FETIIFN
G14 FEM：ELEVATIFR REYE
1s I＝IFBF $=12 T H E N . I=1$
$\because 1 气$ IFK $\$=\mathrm{CHF} \phi(\because 1)$ THENF $A=F A+, I E L S E F A=F A \cdots$
$\bar{\sigma} 1 \mathrm{~B}$ IFFAO4OTHENF $\mathrm{A}=40$
$\sigma 2$ IFFA -40 THENI $A=-40$
σ IFFAOTHENFI＝ $1:$ FTHIIN
$\because 24$ IFFA＝0THENFL＝2：FElIFN
2に FL＝：FETIIRN
GE FEM：WHEELS REY
σ IFWH＝10THENWH＝12：FETINF
$\sigma \mathrm{O}$ IFWH＝1 2 THENWH $=10:$ FE IIIKN
G○1 FEM：EET VOFF FFEO

GE FEM：SET VIF FALIAL

$\because 7$ LINE INFUIT＂VIFi FALIIAL＂；VX $\$: V G(\Xi)=V A L(V X \$)$

640 FEM：FLAF \because KEY
$\because 41$ IFEF $=1$ OTHENEF $=12:$ FETLIFN
$\because 42$ IFBF $=12$ THENEF $=10:$ FETLIFN
944 FEM：AIITOーOES KEY
$\because 45 F(\Xi)=1:$ FETIIFIN
\％4に FEM：FEV THFIIGT KEY
$\because 47$（FF（\％）＝ 1 T HENTF：$=7$
\％4：FETILFN
OEO FEM：MLSEEI AFFROANHFII $\angle E Y$
$\because 1 \operatorname{IFF}(2)=1 \operatorname{THENF}\left(\mathrm{~S}_{1}\right)=1$
宗 FETIIFN
FEB：FLAFHE KEY
$\because 4 \operatorname{IFF}(2)=0$ THENFA $=0$ ：FL＝＝F FETIAFN
GFA＝1：1：L＝1：FETIIFN
1000 FEM：EITIIATION III DATE：FOUITINE

1010 GOUB1 100
1012 GOUBE11EO
1013 GiOUBE1145

1016 GEIB110た

$101 \% \operatorname{IFF}(2)=1$ GTOU
1020 GiOZUNA 400
1021 BOEBB1500
1030 IFALく＝0 THENAF＝1：GOTOQOO
1031 IFF $(2)=001010 \%$
1032 IFALOOGTOLOK
$103 \operatorname{IFF}(7)=160100$
$1054 \mathrm{~F}(7)=1$
$10:$ K TY＝YN
$10: 5 T X=X N-75$
1042 IFFA． 1 THENAF $=2: 610$
1044 IFFACOTHENAF＝3：
104 に I FF（
104 E IFAX $100 \mathrm{THENAF}=4: 101000$
10 IFAX 50 THENAF $=5: 501500$
10 IFWH $=10$ THENAF $=6: 511000$
1054 IF TX（）THENAF＝7：GiOTOOO

1 （GE：IFABE；（TY） $100 T H E N A F=7$ ：BUTGGOO，
$10 \leqslant 0$ EOTG10\％シ
1062 AF $=8: G O T O O$
$1068 \operatorname{IFF}(5)=1$ LiOTOLOS
1070 IFFAンOGiOTO107に
1072 IFFA OTHENF $(\leqslant)=0$
1074 EGTG1 6
107 に $\operatorname{IFF}($ に $)=0$ THENAX $=A 1: F(た)=1$
1077 IFTF＝EGOTO10：
107

1080 FA $=1: F L=1: F C=-300: G 0100$
$10 E 2$ IFALCOTHENAF $=610 T E O 00$
$10 \Xi 4 \quad \mathrm{TF}=\mathrm{B}: \mathrm{FA}=0: \mathrm{FL}=2$
$10: E A F=10: G 0 T 10000$
10 IFXN－ 9750 OF ABE（YN ） 10010101094
$10 \% 1$ IFA 300101010
10% AF＝0： 10010000
$10 \% 4 \mathrm{AF}=\%: 6 \mathrm{OTO} 000$
10 EOTO1700
1100 FE ：IIF•LIATE FIIEL
1102 FII＝FII－（ 14 －TF）＊T，I：IFFINO）THENFII $=0$
$1104 \mathrm{FF}=\mathrm{FL} 1 / 3120:$ FETLIFN
$110 \leqslant \operatorname{IFF}(7)=1$ THENFG：＝0：FETIIFN
$1107 \operatorname{IFF}(\leqslant)=1$ THENFETIIFNN

1110 IFFACOTHENFIL：$=-1 * \mathrm{FiO}^{\circ}$
1112 FETIIFN
1114 FEM：IIF－IIATE AL．TITILLE
$1115 \operatorname{IFF}(7)=1$ THENFE TUFIN
$111 \leftrightharpoons \mathrm{AL}=\mathrm{AL}+\mathrm{T}, \mathrm{HF} \mathrm{F} \mathrm{E} 1 \Leftrightarrow 0$
Listing 1 continued on page 306

ATARI 400，\＄259

ATARI 800， $\mathbf{\$ 6 4 9}$

ATARI 16K Memory Mod．．．．．．$\$ 75$. ATARI 850 Interface Mod．．．．．． 159. ATARI 830 Modem
ATARI 825， 80 Column Printer ATARI 410 Program Recorder ATARI 810 Disk Drive ATARI Joysticks，Pair ATARI PAC－MAN ${ }^{\circ}$ ataRI Star Ralders ． 32

ystems
Box 1073
Syracuse，N．Y． 13201
315－478－6800

Listing 1 continued：
111 ！：TFAL OTIIE NAL＝い：たた TUFN

112 FETIIN
1124 FEM：IIFTATE AIF゙ったEt
$1125 A^{\prime}=\approx 50 \rightarrow-1001 * T K$
$112 \epsilon . A K=A \Xi-2 * F A$
1127 IFBF $=1$ OTHENFE TIIFN
112 E A：＝A
$1130 \operatorname{IFF}(5)=160101132$
$1131 \operatorname{IFF}(2)=1$（i）TTに1142
1132 IFFA $=0$ THENF $T=0:$ FETIFN

1134 FA $=A E:(F A A):$ IFFA $=1$ THENFiT＝1： 1311137
113 IFFA $=2 \cdot$ THENFT $=1(0): 1,1.191137$
113 IFFA $=3 T H E N F T=20 E L \therefore E F T=: 0$
$11: 37$ FiT $=1 * F T: F A=, 1 * F A$
113 EO＝K＋F

1140 IFIO OTHENEO $=20 \%+C$
1141 FETIIFN
1142 IFFIA $=$ OTHENFETIRN

$1144 \mathrm{FA}=0: 1010113$
1145 FE ：IIFIATE FIULIEF FIGIT VAFIIABLE
$114 \leqslant \mathrm{FF}=40+F A+F A: F F T I F N$

120 VL＝ABE（LE－LI）：ML（S）＝－1：IFI． $1=$ LITHENEI，$(5)=1$

120 LA＝Lに：
$120 E M 1=M F$
$1210 \mathrm{LA}=\mathrm{L} E:$ SUGUE 2000
$1212 M Z=M F=[1 M=A E \div(M Z-M 1)$
1214 IF LMM＝0にOTG120
$121 今$ M

$1220 \quad \therefore=O O:[1 R=V I+B O(L G / K F)$

122 FETIUFN
122 TFEI（4）＝ 1 THENOF $=1 E:$ OHFI EFOF：$=1: B H E A$
122E FETIIFN

124 W［I＝WA $(I, 0): W V=$ VJA $(I, 1)$
12 心 FE TIIFN
$1-\%$ FiEM：Sill VES WINEI TFJANITLE

12に4 MX＝LX：MY＝LY

$1270 \mathrm{~L}=\mathrm{WV}$ ：GOUE130）
$1 \approx 7-M X=M X+L X: M Y=M Y+L Y: C E S$
$1279 \quad \mathrm{r}:=\mathrm{MA}: 5 \%=\mathrm{VZ}$
1．ニグ FETUKN

13 IFA $=270$ THENO $=\therefore B=270-A: 10111 \therefore 10$
$130 \mathrm{O}=\mathrm{B}=\mathrm{A}-270$

1312 IF $\mathrm{Q}=1$ THENFETIIFN
1314 IFG＝2THENLY＝－1 以 $Y:$ FETI IFN

$1 \geqslant 1 \vdots X=-1$＊$L X$
1 OF FIIFNN
1GEG FEM：LOMFOES X, Y LOMFINENT：INTU A FTILAF VEGTGK
$13 \Sigma \cup Z=G \mathcal{G}(M X Z+M Y$ ）
1354 IFMXC＝0 Oit 13
1 SK IFMY＝OTHENG＝2ELSEO： 1

135 IFMYく＝（）THENE＝SFLSEに： 4
$13 \leqslant 0$ IFMX $=0$ THENMA $=00: 0.117111 .: 1 \% 6$
$13 \approx \mathrm{MG}=A B S(M Y / M X)$
$13 \leqslant 4 \mathrm{MA}=A T N(M E)$ सドた

$1: 6$（FI＝ 2 THENMA $=\%(1+$ MA：FE［IIFN

$1: 32 \mathrm{MA}=270+\mathrm{MA}$
1374 FETIIFN
1400 FEM：GET FOUITION FOR GHEDA LIEFLAY
$140 Z A S(Z)=A S: F A(Z)=F A: C C(\because)=1: A L(Z)=A 1$ ．

$1410 \mathrm{~F}(0)=1$ ：IFT［1TW（1）＋\＆ogTI144天
$1412 \mathrm{~A} I=A E A B(A B E(F A)$ KFF）
1414 FiguB12たO
1416．［IN＝ES＊（T［1－TW（1））／Sに00
141：$-\mathrm{N}=\mathrm{TK}: \mathrm{L} 1=L L(1): 1 \leq 1 \mathrm{~L}$（1）

$142 \mathrm{~F}(0)=0: \mathrm{TW}(1)=T[1: L . L(1)=L Z: G L(1)=[$
1424 L

$14 \because A B=A B(Z): F A=F A(Z): C I=\sigma(Z): \square L=A I(Z)$
142 FE FUIFN
1440 ） $\mathrm{TW}(1)=T[1: F(0)=0$

Listing 1 continued on page 308

A Public Service of This Magarine Ad
\＆The Advertising Council Ad
Council

Would you help this kid？

When the dam broke at Buffalo Creck，West Virginia，a lot of people weren＇t as lucky as this little guy．

Jamie and the rest of the Mosley family made it up the hill just in the nick of time． Seconds later，a wall of water swept all their earthly possessions away．

Here you see Jamie in the Red Cross shelter，thinking it all over．

One look at that face，and we＇re awfully glad we were there to help．

Every year，you know，Red Cross touches the lives of millions upon millions of Americans．Rich．Poor．Average．Black． White．Christian and Jcw．With support． With comfort．With a helping hand when they need it．

Sowhen youopen your heart，with your time or your money，you can be certain it＇s in the right place．

Red Cross is counting on you．

Listing 1 continued：
1444 ［it：ELE 1260

1450 EOEDEOOOO
$1452 \mathrm{~L}=(1)=12: 6(1)=12$
$14.54 \operatorname{IFF}(0)=1601 T 1458$

145：GIOTO1426
1 SOO FEM：VIIF FOUITINE
1502 IFVOI 1 ）＝0TOTM15 40
1 EO4 FBFUI＝OTOI
1 SOE NEXT：GOTO1154

$150 \mathrm{LE}=1.2: 1 \mathrm{BE}=1 \mathrm{O}$
$150 ; A F=V[(1,0)): L L=\backslash 15(.1,1)$
1510 LIt＝360－L．L
15． 12 E－G 181200

150 IFVO（2） 5 THENVO亿家）$=34$
$15 \operatorname{IFVO}(z)=45$ THENVG $(z)=4 \Leftrightarrow$
1594 GTO1560

150 GTO151\％
1540 V

$154 E$ IFAL 4000 THENMK $=0: 10 T O 151 \varepsilon$
$150 \operatorname{IFF}(1)=1$ THEN． $1=$ EL

$154 \mathrm{~F}(1)=1: \mathrm{MK}=1: 501015$
156 FFINTEHF\＄（
156 FFINTE（ 16,21 ），＂
1564 FRINTGHFか（2，）
15心．IF MK＝OTHENF（1）＝0：FETIIFN
1570 IFLOLL＋ 10 FOCLLL－1 THENFETLFN
1572 IFFA $\because O$ OTHENFE TUFN
$1574 \quad F(1)=0: F(2)=1$
157气 EOTO1540
$157 \mathrm{IFF}(\Xi)=1$ THENVI $(\Xi)=1 \mathrm{~K}: F(\Xi)=0$
15：0）GTO154に
160 FEM：ILE FOUIT INE
$1 \Leftrightarrow 02 \mathrm{ZN}=\mathrm{AL}: \mathrm{TH}=2.8 \mathrm{C} 471$ ：Mk＝
$160 \mathrm{LW}=1.6 \%$ FWれTI：IFF（7）＝ 1 THENLい $=0$
$16.04 \operatorname{IFF}(7)=1$ THENI：$:=L L:$ ：$A=0$
$1 \leqslant 0 \leqslant \sigma=1$

$1 \leqslant 10 \mathrm{HA}=\mathrm{LI}+\mathrm{C}, 1$
$1 \leqslant 12[\pi=50-H A: T E=1:$ IFHA $1: O T H E N[\because=H A: T S=-1$
$1 \leqslant 14$ IF［NGTHEN［N：$=-1 *[\|: T S=-1 * T!$
$161 \leqslant$ TL $\$=" W ": I F T \xi=1$ THENTL．$\$=" E "$

$1622 \times \mathrm{XN}=\mathrm{XO}-[1 \mathrm{X}: \mathrm{IF}$ TL $\$=$＂$E$＂ THENITY $=-1$＊［IY
$1624 \quad Y N=Y O+[1 Y+[1 W$
$1 \Leftrightarrow 2 に L M=K$ Fi＊ATN（A！／XN）

$160,1=(I-M-T H) / 0.25:, I=F I X(, 1)$
162 IF－ 3 THEN． $1=3$
163 IF，I－STHEN． $1=-3$
16 E ． $\mathrm{BE}=\mathrm{BE} / \mathrm{O}, ~ 2 \mathrm{E}: \mathrm{BE}=\mathrm{F} \mathrm{I} \times(\mathrm{E}(\mathrm{E})$
163 IFEE－7THENEE $=-7$
$16:$ IFBE 16 THENBE＝7
16 IFBE 3 THENEE＝7
16% IFYN $=O$ THENEE $=-1 * E E$
1640 IFMF＝OTTO

$1 太 4 E$ Mr $=0$
$1 \leqslant 4 \mathrm{~B} X(1)=\mathrm{BE}: \operatorname{BY}(1)=.1$
1650
1た54 FFINTCHFぁ（ $-5+$ MK）
$1 \Leftrightarrow$ FFINTE（ 16,21 ），＂
165 FRINTEHFi中（ご心
$16 \Leftrightarrow 2 \times 1=X N$ ：YO＝YN

$16 E \mathrm{E}$ F：$=1$
1670 FOFI $I=0$ TG

16．74 NEXT I
1676 IFF $:=0$ OinTO1 6
$167 E$ FFFINTE（ $17, x_{1} 1$ ），

168 IFXIく4\％THENXI：$=4$
$16 . \mathrm{E} 4$ IFXE 79 THENXE：$=79$

$16 E=X E=X L$
169 GणTロ1031
1700 GOTU17 9
1799 BOTO224

Listing 1 continued:

1 EOC FEM: REVEREE THRIIET AFFLIEI
$1 \mathrm{EOE} \operatorname{IFF}(4)=160 \mathrm{TO} 1 \mathrm{BO}$
1804 VにA:
$1806 V=V \square 1-(3,266 \leqslant) * T$
1 BOE IFV $=0$ OTHENV $=0$
1810 VO=V
1E12 $A E=V /(1.152 * 1.47)$
1E14 RETLIFN
2OOO FEM: COMFIITES NEW FOGITION
2004 IF $\mathrm{CN}=0$ THENL: $A=0: \operatorname{LE}(5)=1: \mathrm{LB}(6)=1: 60102014$

$2012 \mathrm{CA}=\mathbf{5 6} \mathrm{O}-\mathrm{L}: \operatorname{LE}(5)=1: \operatorname{LE}(6)=-1$
2014 IFLASE9. 50IOTOZOS4
2016 IL $=[I N * C G E(E A / R F): \Gamma L=[L / G 0: L B(3)=L E(S)$
201 E IFLE $(\Xi)=1$ THENL $2=L 1+$ LLL : OTOLOZ4
$2020 \quad L 2=A B E(L 1-[I L)$
2024 LA=L1: 1010182400
2026 M1 $=$ MF
202 L LA $=\mathrm{L} 2$: 0 OEUE 2400
2050 M2=MF

$2034 \mathrm{~L} 2=\mathrm{L} 1: \operatorname{LI}=\mathrm{CIN} / \mathrm{COE}(\mathrm{L} 1 / \mathrm{KF})$

$203 \mathrm{IFLB}(4)=-16 \mathrm{HEO}$
$2040 \quad$ E2 $=A B E(B 1-L I C i)$
2044 BOTO2050

$2050 \mathrm{DF}(4)=F I \times(1,2): 0 \cdot(5)=(1,2-E F \cdot(4)) * 50$
$20 \mathrm{EF}(6)=\mathrm{FIX}(\mathrm{G} 2): \operatorname{CF}(7)=(\mathrm{G} 2-\mathrm{CF}(6) * 60$
2054 RETUIFN
2100 FEM: FLIOT GLIDESLOFE CROGSHAIFE
2101 IFXOS=75OTHENFETLIRN
$2102 \times 0=3+10 \times(0): \times 1=0+10 \times(1): Y 0=18+13 Y(0): Y 1=18+6 Y(1)$
210 F FFINTEHFW(25)
2104 FÖFY=1STGZ1:FFINTE (Y, X0)," ": NEXT
2106 FRINTC (YO, 1), ETKING (15,32)
10G FORY=15TG21:FFINTE(Y,X1), EHF: क(149):NEX1
2110 FFINTE(Y1, 1), BTFING\$($15,1 E 1$)
2112 FFiINTE $\left(Y_{1}, X_{1}\right)$, CHFi $\$(14:)$
2114 FFINT ($(1 E, E), " \square$

$211 E$ FETIIFN
2400 FEM: CIMFIITES MEFIIIIGNAL FAFCIE, MF
$2404 \mathrm{kM}(0)=7 \% 15.70446$
$2406 \mathrm{KM}(1)=23.26592$
$240 \mathrm{tM}(2)=0.0525$
$2410 \mathrm{KM}(\mathrm{E})=0.000218$
2414 IFLA $=0$ THENLA $=0+1 / 60$
2416 IFLA ($8 \%+5 \% / 60)$ THENLA $=E \%+5 \% / \leqslant 0$
241 E S1=SIN(LA/KF)
$241 \mathrm{Si=SIN(LA/KR)}$

$2424 \mathrm{TM}(0)=\mathrm{KM}(0) \mathrm{HLOLG}(\mathrm{TM}(0)) / L O G(10)$
242 $\operatorname{TM}(1)=\mathrm{M}(1)$ स: 1
2426 TM $(2)=1: M(2)$ HE

$24: 2 \mathrm{MF}=\mathrm{TM}(0)-\operatorname{TM}(1)-T M(2)-T M(3)$
2436 FETLIFN
SOOO FEM: AEORT FROITINES

GOOE M\$(3)="THE ETALL OCOURFELI AT AN AL.TITILIE OF

EO10 M\$ (S) = "THE IMFACT FULIFTLIFEL THE TAIL EEETIGN IOF THE FUGELAIGE.
SO12 M\$(E)="-… LOEATION OF CFA:EH

O1t M\$ (E)=" FITLH ANGLE="
301E M $(9)=" \quad$ AIFEFEELI="

EO2 M\$ (12) ="THE IMFACT FUIIFTUREN THE
SO2 M $\mathrm{M}(1: \mathrm{G})=$ "YOUI FORGOT TO LOWEF THE LANIING GEAF."

EOS FL=O: IFTXOTHENFL=1
$303 \mathrm{FW}=\mathrm{G}:$ IFABS (TY) 100 THENFW $=1$
OU4 $N \$(\Sigma)=" F E E T$ INETIE UF FIUNWAY"
SO41 IFTX $=$ "OTHENN $(2)=$ "FEET ZHOFTT OF FOLNWAY"
SO42 N $\$(\Xi)=" F E E T$ TOL LEFT OF RIUNWAY EENTEFLINE"
SO4 IFTY=OTHENN $(\Xi)=$ "FEET TO FILIHT OF RLINWAY CENTERLINE"
$3044 \mathrm{FX}=\mathrm{FIX}(\mathrm{TX}): \mathrm{FX}=\mathrm{AE}:(\mathrm{F} X)$
$3045 \mathrm{FY}=\mathrm{FI} X(T Y): F Y=A B E(F Y)$
3050 IF $A F=0$ GOTO 360
$\operatorname{SOS} A X=I N T(A X): F A=I N T(F A): A E=I N T(A S)$
3060 ONAF $00103100,3150,3200,3250,3500,3850,3400,3450,3500,3550$
3100 B0:1ES700

3102 FFINTE (15,0), M\$(1)
3104 FFFINT"YOUI FLEW INTO THE GROUINL.
210G FFINT"THE INETRILIMENT FEALIINGS AT TIME OF LFAEH ARE AE EHOLWN AEGIVE."
$310:$ END
3150 LE
315Z FFiINT M\$(1)
3154 FFFINT M\$(Z)

How can you tell if your exercise program is doing your heart any good？ One way is to monitor your pulse rate．

The Genesis exercise computer
 reads your pulse rate accurately during exercise．It automatic－ ally wams you（with an audible beep）if your pulse rate is over or under your maximum or mini－ mum＂training zone．＂
Once you＇ve finished，Genesis tells you how many minutes you exer－ cised at the right pulse rate．

Strap Genesis on your wrist， program it easily with your maximum， minimum，and resting pulse rates，and go．Only Genesis uses a patented crystal which picks up the actual sound waves of your pulse．

A medically designed micro－ processor chip makes it smarter than other exercise meters．

Try Genesis for 30 days．If you＇re not absolutely satisfied，retum it for a full refund．Send us your check for $\$ 159.95$ ，plus $\$ 2.50$ for postage and handling．Sunshine Express， 4357 Chase Avenue，Los Angeles， CA 90066.
MSA，MASTERCARD HOLOERS： ORDER TOLL FREE（800）423－6383 IN CAIIFORNLA（800）352－6207

Listing 1 continued：
315 FFilNT M\＄（3）；AX；＂FEET．＂
315 FRINT M $\$$（4）
316 FFINT M\＄（
$31 \Leftrightarrow N \$(1)=M \(6)
364 GDEUB $\because=0$
316 ENI
SOO ELS
3O2 FFINT M\＄（1）
ZZO4 FFFINT＂YOUI FLEW ］NTG THE GFIGUINLI IIIFING FINAL AFFFFIGAGH．＂
EOGFFINT＂AT TIME OF EFAEH，THE AIFIOAFT FFOFILE WAE AG FGLLOW：＂
ZOE FFINT M\＄（E）；FA；＂［IEOREE＝＂
玉210 FFINT M (θ) ；AS
$3212 \mathrm{~N} \$(1)=\mathrm{M}$（6）
3214 GOBEOOO
E21 END
OEO ELS
325 FFINT M\＄（1）
3254 FFINT M $\$(10)$
32EFFFINT M\＄（11）；AX；＂FEET．
$32 G$ FFINT M\＄（12）＋＂FUSELAIGE．＂
$3260 \mathrm{~N} \$(1)=\mathrm{M} \$$（6）
S2E2 EDEUE ：ENOO
3264 END
EOOO ELE
3602 IF WH＝10THEN FFINT M\＄（1）
ЗЗ04 IF WH＝12THEN FFINT＂
306 FFINT M\＄（10）
$30 E$ FFINT M\＄（11）；AX；＂FEET．

33_{12} IF WH＝10THEN FFIINT M\＄（12）＋＂FIIELAEE．
S14 IF WH＝12THEN FFINT＂THE IMFAET LIAMAGELI THE LANLIINIG EAK．＂
E1t IF WH＝12THEN FFINT＂ALL FASEENLEFF：HAVE BEEN GAFELY EVA UATEL．＂

E2O LiOUEVE EEOO
32 END
OEO CLS
ES2 FFINT M\＄（1）
354 FFINT M\＄（13）

SBFINT＂ALL FAGEENGERS HAVE BEEN SAFELY EVALIIATE［I．
$=60 \quad N \$(1)=M \(\leqslant)

$3: 36.4$ ENLI
3400 LE
3402 FFINT M\＄（15）
3404 FFINT M\＄（14）
$3406 N \$(1)=M \(7)

3410 END
こ4EO ELS
34：FFINT M\＄（15）

345G FRINT＂THIE IS A VTULATIUN IF GIMF＇ANY FFIDIEIURES：＂
34E FFIINT M\＄（16）
$3460 \mathrm{~N} \$(1)=\mathrm{M} \(7)
$34<2$ LiOB Bla 300
3464 EN［I
3500 ELS
SO2 FFINT M\＄（15）
EEG4 FFINT＂YOUI FIGLLELI IFF THE FIUNWAY AFTEF TMIIMHING LOIWN．＂
SOK FFIINT M\＄（1
350゙ N
352 Litulas
Es FiFINT

S1
$351:$ ENL
BSG ELE

3556 ENDI
3600 ELS

ZGU FFINT＂ALL FFIOEEILFES WEFE FROFEFLY EXECDTEEI．
36．0にN $N(1)=M \$(7)$
3610 FFINT＂EINGFATILATIGNG GN A ELILESEFIL FLIGHT．＂

$2 \leqslant 13$ FFINT
$\because \in 14$ XN＝AEG（XN）：$I N=F!X(X N+T S O)$
S1S YN＝AES（YN）：YN＝FIX（YN）
O－16 FFINT＂YOULR AIFRAFT EAME TG FEET AT THE FOLLOWING FOISITIN：＂
SG17 FFINT＂＂；．IN；＂FEET INGILIE THE FIUNWAY＂
گー1EFFINT＂＂；YN；＂FEET FFIOM FILINWAY EENTEFLL INE＂
36O ENLI

3702 FOF $I=9 T G 2$
3704 FFINTE（I，O），BFO（7\％）；
BOに NEXT I
370 FETIIFN
EOOO FEM：I＿ANLING STATIETILG
3802 FRINT
E：O4 FFINT GFARE $\$(Z に)$ ；N $\$(1)$
SOM FFINT
ZOB IFFL＝OTHENFFINT $A X$ ；N $\$(2)$

EE10 FFINT
O1二 IFFiW＝OTHENFFINT FiY；N $\$$（ $亏$ ）

Listing 1 continued on page 316

ВНВт тия name means BUSINESS！
Call us for the BEST in Business Systems at the VERY BEST prices AND service．Listed here are just a
few examples of our product line．
You can rely on us for up－to－date
technical information．We are always ready to advise you of integrating computers，printers and software．

Unquestionably lowest－priced FULL－FEATURED Business Com－ puter： 64 K memory（NOT 48 K or $32 \mathrm{~K} .$. ）， 80 char．by 24 line display（No need to split your lines！）．Graphics，numeric keypad． 2 floppies w／350 K storage．CP／M and Microsoft BASIC included

FINALLY AVAILABLE FOR IMMEDIATE DELIVERY！Would have been unbelievable just 1 year ago．Complete Business Computer with 10 MEG HARD DISK built－in，at a price below many＂personal computers＂with floppies only！！！All the traditional TeleVideo fea－ lures：superb quality，longterm reliability，brilliant display，out－ standing finish and appearance．Detachable keyboard， 2 serial ports，hard disk backup by 369 K floppy．CP／M included．Exten－ sive business software supported by TeleVideo（below）．Particu－ larly attractive to the businessman：NATIONWIDE service on site by TRW！And multiple 802 computers can be tied together to form a network with the TeleVideo 806／816．Also avallable：TeleVideo TS 802：LIST $\$ 3,495$ ，ONLY．．$\$ 2,645$ ．
WE SHIP ALL TELEVIDEO COMPUTERS FROM STOCK．At your request your computer will be＂burned＂for 24 hours prior to shipping to ensure immediate operation once received by your＂， Teievideo SOFTWARE TELESOLUTIONS：Two most desired programs WORDSTAR，word processing and CALCSTAR elec－ tronic spreadsheet．Individually priced at \＄790；when purchased together with TeleVideo computer SPECIAL ONLY．．\＄449．

TURBODOS operating system；speeds the average program ex－ ecution at least 4 －fold．ONLY．$\$ 350$ ．

COBOL w／extended screen display control，meetS ANSI X3．23． ONLY．$\$ 745$ ．

Just released！A boon to the business user：Runs IBM PC soft－ ware（16－bit）as well as all8－bit CP／M programs（with built－in 8085 processor）． 128 K memory standard，allowing larger programs without overlays：further expandable to 768 K memory！Twin flop－ pies w／640 K； 5 MEG HARD DISK optional．Serial AND parallel ports．Extensive graphics stan dard；super COLOR graphics op－ tional．NATIONWIDE SERVICE from over 400 Zenith service cen－ ters！An exceptional buy！！！SOFTWARE：most extensive list of Zenith business software at economic prices．Call for details．
PRINTERS FOR YOUR SYSTEM：
Okidata 82A（for all computers above）．．LIST：\＄525；ONLY：\＄459 STARMICRONICS（all computers above）LIST：\＄464；ONLY：$\$ 399$ EPSON MX－80 FT w／Graphtrax（Zenith）LIST：\＄695；ONLY：\＄545 SMITH－CORONA TP－I，daisy－wheel
（all computers above）．
．LIST：\＄895；ONLY：\＄CALL
Special savings on C．Itoh Starwriter
NEC．Comrex letter－quality printers
COMPUTER SUPPLIES：
3M diskettes $51 / 4^{\prime \prime}$ ，hard／soft sector．
S．S．，d．d．，box of 10
3M diskettes 8 ．＇
\＄CALL

3M diskettes $8^{\prime \prime}$ ，hard／soft sector，
ONLY \＄21．00
S．s．d．d．，box of 10.
ONLY $\$ 27.00$
Ribbons for QUME Sprint 5，IBM6／6240，box of 12 ．ONLY $\$ 29.50$
Write for our information booklet．
ORDER DESK：
$\square \square$ OPEN 24 Hours CA，AK，HI call（714）781－6566 TECHNICAL INQUIRIES：
Mon．－Fri．9－5 PST（714）783－1363；Sun．9－5 PST（714）781－6566 P．O．Box 3791，Riverside，CA 92519 VISA MASTERCHARGE APO．FPO，INTERNATIONAL ORDERS ACCEPTED；Bank refer－ ence：Barclays Bank of California（213）892－7244
TERMS：Prices apply to propaid orders only，indude 3% cash discount．Per－
sonal checks allow 2 weeks to clear．California residents add 6% tax．Prices sonal checks allow 2 weeks to clear．California residents add 6% tax．Prices subject o change．Offers may be withdrawn without notice．All items new in original factory cartons and with full manufacturer＇s warrantr．15\％restocking charge on ali retumed iems；absolutely no return on used or damaged items．
Compuers shipped AIRFAEIGHT COLLECT for fastest delivery． $10 \% \%$ handling charge on foreign orders．Software not warranted for suitability for a specific usage．Software returnable ONLY in UNOPENED original wrapping．
CP／M is a registered rademark of Digital Research．Micr osott is trademafk of Mirrosott
Col poration．$Z 80 \mathrm{~A}$ is repistered Irademark of Ziloo Inc．Telesolutions is trademark of Cof poration． 280 A is registered iradermark of Ziloo．Inc．Telesolutions is trademark of

Listing 1 continued：
ES14 FFINT

E1E FETIIFN
SOES FEM：TIME LIELAY F＇A［I
SOO FOR $I=1$ TIG
50゙った NEXT I
SOG FETUFN
7050 FEM：GONVEFT FTE TG TIME IF LIAY IN BELOINLIE AESOLITE．
7055
706 FIF $I=0$ ， 2
$706 \mathrm{~T}=\mathrm{I}(\mathrm{I})=\mathrm{M}[1 \Phi(\mathrm{TV} \$, 1,2)$
7070 ， $1=.1-3$
7075 TE（I）＝VAL（T゙あ（I））

TOES NEXT 1
$70 E E$ NEXT I
70% RETIIFN
700
$F O O O T L I F N$
FE M：FLI
$\because O O O$ FEM：FLITE：VAFIIAELE：DN FEVEFGE：EAALYGFIOINLI

$\because 10$ FFINT LEING F $\$$ ；V 1 ；
O日S FFINT UHFも（こち）
O2O FETLIFN
－
10000 FEM：EELIIN TAKEOFF MOLNII：HEFE
10020 LLS：LLEAR $1000:$ FiANLIMM
10025 ドK＝5．2\％灾
1005 LIIM XM（ 13 ），WM（13）
10051 IIIM F＇\＄$(\xi 1)$
1005 ［IATA $37,35,3,30,27,-5,22,20,17,15,12,10,7,5$
10040 LIATA $6,11,16,21,26,31,66,41,46,51,56,61,66,71$
10041 FOFF $I=0$ TO
10045 FOFF $I=0$ TG $13:$ FEA［I XM（I）：NEXT
10050 FGF $I=0$ TG $13:$ FEA［I WM（I）：NEXT

100 O IIM XE（13），WE（1
$1006 \mathrm{~K} 1=2 \% \mathrm{~K} 2=23$
10070 FIFR $I=0$ TI 13

$100 \mathrm{~K} 1=\kappa 1-2: \kappa 2=k 2+4$
$100 E$ NEXT
100% IO $=40$
100% FiN＝FiNLI（O）
$10100 \mathrm{~F} E=1$ ：IF RNCO．S THEN F $\mathrm{F}=\mathrm{B}=-1$
$10105 \quad W 1=75:$ IF $F=-1$ THEN $W 1=25$

10115 IIIM XL（14），XFi（14）
$10120 \quad 1=31: K=49$
10125 FIIF $I=0$ TO 14
$10130 \times L(I)=1: \times F i(I)=k$ ．
$10135 \quad . \quad 1=2:$ K゙＝ド 2
10140 NEXT
10145 LIATA FIIEL，LEE，$\%, V H F, M H Z$, THFIUST，MAX，I IILE，FIEV
10150 LIATA FITCH，＂＋＂，＂－＂，LIEG，FLAF＂
1015 LIATA COMF＇ASS，AIFBFEE［I，KTS，＂VEFT＂，SFEELI，FFM
10160 LIATA ALTITULIE，FEET，ELILK，BRAKE，SET，REL．

10175［IIM 心क（25）

$1018 \mathrm{FOF} \mathrm{I}=0$ TO $\mathrm{O}: \mathrm{F}(1)=0: \mathrm{NEXT}$
101% FEM：INIT VAFIAELES FLFi TAKEIIFF MIILIE
101% FII＝2000OO：FF＝O：OO：＝75：AS＝0：FiC：O：AL＝O
$10200 \mathrm{MZ}=77: \mathrm{TF}=6: \mathrm{FL}=2: \mathrm{FA}=0: \mathrm{WH}=1 \mathrm{O}: \mathrm{I} \mathrm{X}=40: \mathrm{HY}=7: \mathrm{EF}:=11: \mathrm{EF}:=11$
$10205 \mathrm{AE}=0$
10215 FFINTE（E，17），＂IINITELI S12 ELEAFEI＇AS FILE［I＂
10217 FFIINT：FFFINT

1021° FFINT＂MINIMUM EEILI NG EOINLITIONE AFE（N EFFFET．＂
$102 B 0$ FFINT＂EKY EINLIITIONE AT 2O，OOO EXATTEFELI．

AT 3O，OOO EFIOHEN．
10240 FFIINT：FFIINT
10245 FRINT＂LFOIN TAKEOFF，MAINTAIN HEALING OTE TOI OOO，THEN FFIOEELI AG FILE［I．＂
$1024 E$ FFINT：FFINT：FFINT＂ETANLIEY FGFi TAFEDFF GLEAFANIE＂＂
1025 TG＝7000：GOEUB 115
$102 E 0$ LG
10265 FFINTE（10，17），＂IINJTE［I 312＂：FFINT：FFINT
10270 FFINT＂YOUI AFE ELEAFE［I FI．te TAKEOFF AT OBOG HÖLKE＂
10275 TE＝SOOO：GiOJ1E 1.1535
102 EO L L

10205 OUE $105:$
10300 EIOUE 10410
10305 EiOBLE 10480
10310 FFINT OHR $\$(Z)$ ；：GISME $10 \leqslant 15$

10320 GOELUE 10790
1032 GITIG 10 OS
$103 O$ FEM：LIIFFLAY F＇ANEL（HEAALIEF：ONI＿Y）

$1035 \operatorname{IFF}(9)=1$ THENRETUFN

$10: 75$ FFINTE $(4,0), F \$(3)$
Listing 1 continued on page 318

ANNOUNCING：

THE MASTER MAX

\＄2540．

Z－80 S－100 SYSTEM W／DUAL 8＂DRIVES
 FEATURING：

S－100，IEEE 6964 SLOT MOTHERBOARD

Z80 AT 4MHZ SINGLE CARD COMPUTER including：
64K RAM（ 64 KX 1 chips）／ 2 serial ports（ZSIO）／ 2 eight bit parallel ports，one usable as intelligent Winchester interface （ZPIO）／On－board EPROM（2732）／NEC floppy disk controller／ all devices interrupt driven／real time clock

CP／M 2.2°

DUAL TANDON 8＂DRIVES，single sided，double density，1．2 MB． Quality，regulated power supply．Three empty slots for expan－ sion．Compact，light weight，modular construction．
Dimensions： $17 \frac{1 / 8}{}$＂wide， $5 \frac{1}{2}$＂high， $23^{\prime \prime}$ deep．

OPTIONS：

220 volt， 50 HZ operation at no extra charge
Double sided，double density 8＂drives，$^{2.4 \mathrm{MB}: \text { Add．．．．．．} \$ 335 .}$
Turbodossingleuserwith spooler：Add． ．$\$ 100$.
Turbodosmultiuser with spooler：Add．
$\$ 550$.
We can also provide you with terminal，printer，other peripherals and software from our extensive catalogue．

CALL OR WRITEFOR FURTHER DETAILS OR FOR DEMONSTRATION
Prices subject to change without notice．
WE
EXPORT
JOHN D．OWENS
WE Associates，Inc．
12 Schubert Street，Staten Island，New York 10305 （212） 4486283 （212） 4486298 （212） 4482913 TWX： 7105882844 CABLE：OWENSASSOC． Please See Our Other Ads in This Issue on Pages 36－37

NOVEMBER SPECIALS

SSM I／04 Kit	141.00
SSM VB－3 80 x 24 Video Kit	339.00
Morrow Designs WUNDERBUS 8 slot－A \＆T	89.00
Calif．Comp Systems 64K Dynamic	299.00
Ram－A \＆T	47.00
Mullen TB－4 Extender Card w／probe－kit	449.00
Godbout RAM 17－64K Static Ram－A \＆T	475.00
Qume DT－8 DS／DD 8＂disk drive	449.00
Ithaca Intersystems 64K Ram－A \＆T	2629.00
North Star Advantage－A \＆T	349.00
S－100＇s Dual 8＂Drive box w／P／S \＆Cables	
Seattle Computer Products	263.00
Support board－A \＆T	199.00
S．D．Systems Expandoram II Kit	

VISIT OUR SHOWROOM－Hrs．－9：00 A．M．－5：30 P．M．M—F
Subject to Available Quantities • Prices Quoted Include Cash Discounts． Shipping \＆Insurance Extra．
We carry products from all Major Manufacturers

Listing 1 continued：

1030 FFINTE（ $7,1 \Xi$ ），F＇$\$(E)$
1035S FOFY＝1TO7：FFINTE（Y，12），EHF $\$(150)$ ：NEXT
1．0400 FOFY＝1TO3：FFINTE（Y，21），CHF\＄（150）：NEXT
10405 FETURN
10410 FEM：IIIEFLAY HÖFIZON LINE
10415 IF $F(9)=0$ EOTO 10430
10420 FFINTE $(9,0)$ ，SFACE\＄（EO）；
10425 IF HY＝Z0 601010440
10430 FFINTE（HY，O），ETFING（EO，＂- ＂）
10435 RETLIRN
$10440 \mathrm{OH}=5: \mathrm{HY}=10$
10445 FOF I＝HY TO 22
10450 FFINTE（OH，O），，FFADE $\$(E O)$ ；
$1045 S$ FFINTE（I，O），STF（NGO（EO），＂－＂）；
$10460 \mathrm{OH}=\mathrm{I}$
10465 NEXT
10470 FRINTE（ 23, IOI），＂＂；
10475 FETUFR
10480 FERI：DIIEFLLAY FUUNWAY
10485 IF $F(n)=1$ 5iOTO 10525
10490 $=10: x=29$
104% FOR $Y=10$ TO 2
10500 FFINTE $(Y, X), " . " ; F A C E \$(E) ; " \quad " ; B A E E \$(E) ; " . "$
$10505 x=x-2: 802+2$
10510 NEXT
10515 ड\＄＝E\＄（13）
10520 FETLIRN
10525 FEM：FFINTE RUINWAY GRAFHILS
1050 IF NO BOTO 1060
$105 \mathrm{FFFINTE}(\mathrm{OY}, \mathrm{OX})$ ，GFADE\＄（WM）；
10540 FFINTE（NY，NX），MK\＄；
$10545 \quad \square Y=N Y: ~ \square X X=N X$
$1055 \mathrm{WM}=\mathrm{FW}$
105S RETURN
1056 FEM：ENTFY WHEN EHIF IN FINAL．ZONE
1056 FFINTC（OY，OX），EF＇ACE $\$(W \mid Y)$ ：IF $F(9)=1$ THEIN RETURN
10570 FOR $I=10$ TO NY－ 1
1057 FFINTE（I XE（． 1 ）），SFACE（NE（．1））
10 EGO NEXT I
105ES IF N $\% 4$ THEN FETURN
10500 FRINTE（NY，NX），MK\＄；
105：RETURN
$10600 \operatorname{IFF}(2)=100 T 010500 \mathrm{ELEF}(2)=1$
10605 FORI＝10FO1S：FFINTE（I，SO），EFALE\＄（21）：NEXT
10610 BiOTO10560
10615 FEM：LIEFLLAY INETRUMT FEALINGE

$10 \angle 30$ YF $=1: x F=6: V 1=0,100011500$
$106 \mathrm{YF}=4: \times \mathrm{XF}=3 \%: \mathrm{V}_{1}=\mathrm{AE}$ ：

1065S REM：IIEFLAY THFIIET
$1066 \mathrm{FOF} \mathrm{I}=1$ TGI
1065 FRINTE（I，11），UHR末（26）；＂＂
10670 NEXT
10675 FFINTE（TR，11），＂＂
$106 E 0$ REM：LIIEFLAY FITEH
106ES FOF I＝1 TO 3：FRINTE（I，20），LHRक（26）；＂＂：NEXT
10690 FFINTE（FL，20），＂）＂
1065 F $5=1+\# \# \# "$

10705 FEM：［IIFFLAY FLAF＇S
$10710 \operatorname{IFF}(2)=16 \mathrm{GOTO} 10760$

10720 FRINTE（ER，5\％），＂ソ＂
10725 FEM：WHEELS
10730 FOF $I=11$ 「 $13: F F I N T \Theta(I, G 7), \mathrm{CHF} \$(26) ; "$＂：NEXT
10735 FFINTE（WH，ヒ7），＂〉＂
10740 FEM：EFAAKE
10745 FORI＝11TE13：FFINTE（I，75），EHFi（26）；＂＂：NEXT
10750 FRINTE（Ek：，75），＂り＂
10755 FFINTICHF (25)
10760 FEM：III FFLLAY FUNWAY ALIIENMT INLIEX
1076 IF $F(\xi)=1$ THEN RETIIRN
10770 FFINTC（23，IO），＂＂；
10775 FFINT＠（ $23, I X$ ），CHFi（ 15% ）；
10780 IG＝IX
107：5 RETURN
$107 \% \mathrm{FEM}: \mathrm{KEY}$ FOLL EUEFTOT
107% IF K $\$=" F "$ THEN KK＝1：GOTO $10 E 20$
10800 IF $K \$="$＂＂OF $k \$=" . "$ THEN $K K=2: G O T O 1020$

10815 IF K $\$=" L "$ THEN KK $K=50101020$
10817 IFK $\$=" W "$ THENKK $=\Leftrightarrow: G O T O 10 E 20$

10820 ON KK BiOBLIE $10830,10845,10855,10800,10525,10 \% 41,1082$
10825 RETIIRN
10826 FEM：THFUET KEY（DIEC：REAEE）
$10827 \operatorname{IFF}(7)=1$ ANLIEF $=11$ THENTF：$=4$
10829 RETURN
$10 E S 0$ REM：THFUST KEY（INCFEAEE）
10831 IFF $(7)=1$ THENFETUR N
1085 IF $F(0)=0$ THEN RETURN

CP/M ${ }^{\circ}$ Users:
 Access IBM with ReformaTTer"

ReformaTTer conversion software lets you read and write IBM 3740 diskettes* on your CP/M or MP/M system.
ReformaTTer is ideal for CP/M users who want

- Access to large system data bases
- Distributed data processing
- Offline program development
- Database conversion

With ReformaTTer, you have the ability to

- Bidirectionally tranfer complete files between CP/M and IBM
- Automatically handle ASCII/ EBCDIC code conversion
- Display and alter IBM 3740 directory and data
Enjoy the same advantages of mainframe access that other ReformaTTer users have. Customers like Upjohn, MEM/Mars, The United Nations, Arthur Young \& Co., Sandia Labs, FMC Corp., and Stanford University all use ReformaTTer. So can you.

Other versions of ReformaTTer con-
version software include
CP/M $\leftrightarrow \operatorname{DEC}($ RT 11)
TRSDOS Mod. II $\leftrightarrow C P / M$
TRSDOS Mod. II \leftrightarrow DEC (RT 11)
Order ReformaTTer today for only $\$ 249$.
*IBM 3740 basic data exchange format. ReformaTTer requires one $8^{\prime \prime}$ floppy drive.

(415) 324-9114

TWX: 910-370-7457
467 Harrilton Av., Suite 2, Palo Alto, CA 94301
CP/M is a reg. trademark of Digital Research

Please send complete information on the follow-I ling versions of ReformaTTer \qquad
Please send ReformaTTer CP/M \sim IBM. My
check for $\$ 249$ (plus $\$ 5$ shipping. Cal. Res. add $61 / 2 \%$ sales tax). \square Charge to my \square VISA \square MasterCard.
I* exp. date
Signature

I Name

Company
Street
City
State
Zip
Mail to MicroTech Exports, Inc.
467 Hamilton Ave., Palo Alto, CA 94301

Listing 1 continued:
$10840 \mathrm{~F}(1)=1:$ TR=1: FRETURN
10E4E REM: RULILIER KEYS
$10846 \operatorname{IFF}(7)=1$ THENRETIIFN
10850 IF ASG $=50$ THEN RETIIRN
1085 IF $K \$="$, " THEN $\mathrm{CO}=\mathrm{CL}-1$ ELSE CO:CO+1
$10 E 6.0$ RETURN
10365 REM: GRARES
10870 IF $F(0)=1$ THEN RETLITN
$10675 \mathrm{~F}(0)=1: \mathrm{EK}=1 \mathrm{~S}:$ IETURN
$108 \equiv 0$ REM:FITIH
$10831 \operatorname{IFF}(7)=1$ THENRE TLIR
$10 E 5$ IF $A E C=50$ THEN REE RURN
$10890 \mathrm{FL}=-10:$ IF $\mathrm{K} \$=\mathrm{CHF} \mathrm{H}(\mathrm{S} 1)$ 1HEN FL=10
$1005 \mathrm{FA}=F A+F[$
10900 IF FA 60 THEN FA $=60$
$10 \% 05$ IF FA -50 THEN FA $=-60$
10910 IF FAㅇ THEN FL. $=1$: RETURN
$10 \% 15$ IF FA $=0$ THEN FL=2:RETLIRN
$10920 \mathrm{FL}=\mathrm{B}:$ RETURN
10925 REM:FLAF
$10926 \operatorname{IFF}(7)=1$ NLIWH $=11$ THENBR $=11:$ RETUR N
$10 \% 30$ IF $F(3)=1$ THEN RETURN
$10 \% 35$ IF $F(3)=0$ THEN $F(\Xi)=1$: ER $=13:$ RETURN
$10 \% 40$ RETURN
$10 \% 41$ REM: WHEELS
$10942 \operatorname{IFF}(7)=1$ THENWH=11
10944 RETURN
$10 \% 45$ REM: SITUATIUN UFLIATE ROULITINE
10950 TV $\$=T$ IME $\$: G U E U B 11555: T . I=T L I-T L: T L=T L I$
$10 \% 5 \mathrm{IF} F(\overline{5})=1$ GiOTO12000
$10 \% 60$ IF $F(0)=1$ GOTO 10970
10\%65 EOEUB 11130:GUTO 10310
10970 IF $F(4)=1$ EOTCO $109 \% 0$
$10 \% 75 \mathrm{~F}(4)=1$
$10580 \quad X X=0: Y Y=0$
$10985 T X=T \square: V O=0: N=1: 0 Y=23: 0 X=5: W M=71$
$10 \% 0$ REM
$10 \% 5 \mathrm{~A}=(11 \mathrm{~B}-1 \mathrm{~B} * T \mathrm{~F}) * 0.0402 \mathrm{E}$
11000 GUELE 11190
11005 IF ALOO GOTOL 11060
11010 IF YY>10500 GF ABE $(x x)>100$ GUTO 11300
11015 IF $F A C=0$ EiOTO 11100
11020 IF ASC150 GUTO 113:35
11025 IF FA 10 GUTO 113 E
$11030 \operatorname{IFF}(3)=000 T 011100$
$11035 \mathrm{AL}=25$
11040 FOOSUE 11100
11045 GOSUE 11150
11050 GuEus 11300
11055 EOTG 10305
$11060 \mathrm{~F}(\%)=1$
11065 G0 00111130
11070 Gusue 11150
11075 GiUsuE 11170
110 OO FOF $\mathrm{I}=10$ TO 22:PRINTC(I, O), BFACE\$(EO);:NEXT
$11085 \mathrm{HY}=20$
$110 \% 0$ Cingub 10410
110% GiOTOI 1115
11100 GUELUE 11130
11105 GUEUE 11300
11110 BUTO1OEOS
11115 REM: NOW LIO LIEFARTLIRE FROUELIURE:
11120 GUTO10310
111 EO FEM: LIFCIATE FLIEL
111 S5 FU=FLI-40*T.1
$11140 \mathrm{FF}=\mathrm{FL} / 3120$
11145 FETURN
11150 REM: LIFRATE FATE GF CLIME

11160 IF $F A C O$ THEN $\mathrm{AC}=-1 * \mathrm{FiO}^{\circ}$
11165 RETURN
11170 REM: LIFLIATE ALT
$11175 \mathrm{AL}=\mathrm{AL}+\mathrm{T} .1 * \mathrm{FL} \mathrm{L} / 6 \mathrm{O}$
$111 \approx 0$ IF ALく=O THEN AL $=0$
111:S RETURN
1110 OE FEM: EOIATIUNE GF MOITION
111:
$11200 \mathrm{~V}=\mathrm{VO}+\mathrm{A} * \mathrm{~T}$
$11205 \quad V B=(1)+V 0) / 2: V 0=V$
$11210 \mathrm{~S}=\mathrm{VB} * \mathrm{~T}$
11215 IF TLく (TX +1 E) GitTO 11235
$11220 \mathrm{TX}=\mathrm{TLI}$
$11225 \mathrm{WE}=\mathrm{FE}$ *RNLI (2)
$11230 \quad \mathrm{C}=\mathrm{C}=\mathrm{C}+\mathrm{WE}$
$11235 \quad \mathrm{CA}=(0 \mathrm{O}-75) / 57.3$

$11245 \mathrm{LIX}=\mathrm{E}$ सEIN(ABS (LAA)
11250 IF LIA 0 THEN LIX $=-1$ * IIX
$11255 \mathrm{YY}=\mathrm{YY}+[1 \mathrm{Y}$
$11260 \quad \mathrm{XX}=\mathrm{xX}+\mathrm{LI} \mathrm{X}$
11265 AS $=V / 1.6927 E$
11270 IF $A E 20$ THEN $A S=A S+W S$
11275 I $X=40+F$ I $X(X X \neq 7 / 20)$: IF I $X>7$ THEN $1 X=7$
$112 \mathrm{E}_{0}$ IFIXCOTHENIX=0
$112 \mathrm{E}_{5} \mathrm{ZF}=\mathrm{FIX}(\mathrm{YY}-2 \mathrm{EOO} *(\mathrm{~N}-1))$
11200 IF ZF\%2500 THEN $N=N+1$:GOTO 11235
11205 RETURN
$11: 00$ REM: VAFI IAELEE: FOR FUNWAY GRAFHIUS

back issues for sale

	1976	1977	1978	1979
Jan．				$s 2.75$
Feb．			$s 2.75$	$s 2.75$
March			$s 2.75$	$s 2.75$
April			$s 2.75$	$s 2.75$
May		$s 2.00$	$s 2.75$	$s 2.75$
June		$s 2.00$	$s 2.75$	$s 2.75$
July	$s 2.00$	$s 2.00$	$s 2.75$	$s 2.75$
Aug．		$s 2.00$	$s 2.75$	$s 2.75$
Sept．		$s 2.75$	$s 2.75$	$s 2.75$
Oct．			$s 2.75$	$s 2.75$
Nov．		$s 2.75$		$s 3.25$
Dec．		$s 2.75$	$s 2.75$	$s 3.25$

	1980	1981	1982	
Jan．	$s 3.25$	$s 3.25$		
Feb．	$s 3.25$	$s 3.25$	$s 3.70$	
March	$s 3.25$	$s 3.25$	$s 3.70$	
April	$s 3.25$	$s 3.25$	$s 3.70$	
May	$s 3.25$	$s 3.25$	$s 3.70$	
June	$s 3.25$	$s 3.25$	$s 3.70$	
July	$s 3.25$	$s 3.25$	$\$ 3.70$	
Aug．	$s 3.25$	$s 3.25$	$s 3.70$	
Sept．	$s 3.25$	$s 3.25$	$s 3.70$	
Oct．	$s 3.25$	$s 3.25$		
Nov．	$s 3.25$	$s 3.25$	$\$ 3.70$	
Dec．	$s 3.25$	$s 3.25$		

Circle and send requests with pay－
ment to：
BYTE Back Issues
P．O．Box 328
Hancock，NH 03449

The above prices include postage in the US．Please add 5.50 per copy for Canada and Mexico；and $\$ 2.00$ per copy to foreign countries．
＊Payments from foreign countries must be made in US funds payable at a US bank．
＊Please allow 4 weeks for domestic delivery and 8 weeks for foreign delivery

Listing 1 continued：
$11305 \mathrm{MF}=\mathrm{FIX}\left(10+\left(13 * 2 F^{\prime}\right) / 2500\right)$
11310 IF NOB GOTO 11350
$11315 \mathrm{NY}=\mathrm{MF}$
11320 ，$=\mathrm{NY}-10$
$11325 \mathrm{NX}=\mathrm{XM}(\mathrm{U})$
11 〒ङ0 FW＝WM（．1）
11335 E\＄＝＝FFAC：$(., 1)$

11345 FETIIRN
11350 REM：IN ZOINE 4－MAFKEF IE FIUNWAY ELIGE
$1135 \mathrm{NY}=\mathrm{MF}$ ．
$11360 \quad \mathrm{l}=\mathrm{NY}-10$
$11365 \mathrm{NX}=\mathrm{XE}$（1）
11370 IF $N \geqslant 4$ THEN FETIIFN

113：O FETIIRN
$11535 \mathrm{AB}=1:$ GiOTO11415
$11390 \mathrm{AB}=2$ ：IF YY 10500 COTOTO 11415
11395 FOR $I=10$ TO 22
11400 FFINTE（I，O），EFACE\＄（EO）：
11405 NEXT I
11410 EOTO 11415
11415 FEM：ABGRT
11420 FOF $I=10$ TO 22
11425 FFINTE $(I, 0)$ ， $\mathrm{OHF} \$(Z 6)$ ；EFACE $(E: O)$ ：
114EO NEXT I

11440 OIN AE GOGBE 1145s，114E0

11450 ENLI

11460 FFINT＂FULLEI BACK THE STIEK TOO FAF：WHEN AI FROBER SFEEEL．＂

11470 FFINT＂ANGI THE AIFCRAFFT EFIN OIIT OF GONTFILL
11475 FETLIFN
$114: 5 \mathrm{O}$ IF YY 10500 GOTO 11505
114 ：S FFINT＂YOUl FAILELI TO ETAY WITHIN THE：FUINWAY EOIINLIFIES．

11495 FFINT＂THE FIUNWAY LIGHTE．＂
11500 FETLIRN
11505 FFINT＂YOUI FAAN OUIT OF FIONWAY．AE：A FEEBILT YOUI FOULLELI INTOI THE

$11515 \operatorname{IFF}(\Xi)=1$ THENFETLIRN
1152O FFINT：FFFINT：FFINT＂YOUI FOFIOT TOI LOWEF THE FLAF＂E．＂
11525 FFINT＂AE A RESULT THE AIFIGAFT COULI NOIT LEVELOF SUFFICIENT LIFT．＂
11500 RETIIRN
1153 FEM：TIME［IELAY F＇ALI
11540 FOR $I=1$ TO TG
11545 NEXT I
11550 RETIIRN
115ES REM：CONVERT FTC TG TIME OF LAAY IN EECONLE AEEOLUITE．
$11560 \quad \mathrm{~J}=7$
1156 FOFB I＝0 TO 2
1570 TE\＄（I）$=$ MIL1\＄（TV\＄，．1，2）
11575 ・ルーム
$11580 \mathrm{TC}(\mathrm{I})=\mathrm{VAL}(\mathrm{TC} \$(\mathrm{I}))$
115 SE T［1＝（36．00＊TC（Z）$)+(60 \mathrm{HTC}(1))+\mathrm{TC}(0)$
11590 NEXT I
11595 RETURN
11600 REM：FLOTS VARIABLE GN REVEFEE BACKGRIOINLI
11605 FFINTE（YF，XF＇），CHFP（Zに）；
11610 FFFINT UEINGF FiV1；
11615 FFINT CHF\＄（25）
11620 RETLAR
12000 FEM：［IEF＇AFTIIRE FOLITINE
$12010 \operatorname{IFF}(7)=160 \operatorname{TO1} 2025 \operatorname{EL} \operatorname{SEF}(7)=1$
12015 B0G1E10540
$12020 \mathrm{~F}(2)=0$
12025 IFWH 11 GOTO12040ELEEAE＝AE＋5
12030 IFERO 11 1OOTO12040ELEEAB＝AS＋5
$1205 \mathrm{IFTF}=4 \mathrm{ANLAI}$ ） 1 EOOHOTGZ4EI ELGOTO120\％
12040 IFAL 1200150120%

12044 FFINT：FFINT

 AE FOLLOWE：＂
12050 FFINT＂1－FAIEE LAN［I］NG GEAF＂
$1205 \mathcal{F R I N T " ~ Z - R E T F A B T ~ F L A F E " ~}$
12054 FFINT＂S－FEDULE：THFUET＂
12056 FFiINT

12060 ENa
12000 GOUB 11130
120% EOBLER11150
$120 \% 4$ BOLIE11170
12099 biOTO10s10
13000 REM：ENLI IF LISTING
name
address
city
state \qquad zip

[^0]: -CP/M is a trademark of Digital Research. Imsai is a trademark of the Fischer-Freitas Corporation

